VERTICES BELONGING TO ALL OR TO NO MINIMUM DOUBLE DOMINATING SETS IN TREES

MOSTAFA BLIDIA, MUSTAPHA CHELLALI, AND SOUFIANE KHELIFI
Department of Mathematics, University of Blida.
B.P. 270, Blida, Algeria.
E-mail: mblidia@hotmail.com, m.chellali@yahoo.com, skhelifi@hotmail.com

Received 30 November 2004; accepted 23 March 2005

Abstract
In a graph $G = (V,E)$, a vertex dominates itself and all its neighbors. A double dominating set of G is a dominating set that dominates every vertex of G at least twice. In this paper, we characterize vertices that are in all or in no minimum double dominating sets in trees.

Keywords: Double domination, Trees.
AMS Subject Classification: 05C69

1. Introduction and preliminary results

For a simple graph $G = (V,E)$, the open neighborhood of a vertex $v \in V$ is $N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood is $N[v] = N(v) \cup \{v\}$. For a set S, we denote by $\langle S \rangle$ the subgraph induced by the vertices of S. A set $S \subseteq V$ is a dominating set if for each vertex $v \in V - S$, $N(v) \cap S \neq \emptyset$. For more treatment on domination in graphs, see [7, 8].

A set S is a double-dominating set, abbreviated DDS, if for every vertex $v \in V$, $|N[v] \cap S| \geq 2$, that is, v is in S and has at least one neighbor in S or v is in $V - S$ and has at least two neighbors in S. The double-domination number $\gamma_{x2}(G)$ is the minimum cardinality of a double-dominating set of G. We call a double-dominating set of cardinality $\gamma_{x2}(G)$ a $\gamma_{x2}(G)$-set. Double domination was introduced by Harary and Haynes [6] and studied for example in ([1, 3, 6])

For a property P of a vertex subset of a graph G, let $\mu_P(G)$ denote the minimum (or maximum) cardinality of a set with the property P. Many researchers were interested in characterizing the vertices of G that are in all or in no set with the property P and cardinality $\mu_P(G)$. Indeed, Hammer et.al., [5] have characterized those vertices in a graph for independent sets with maximum cardinalities, Mynhardt [9] has characterized the vertices in all or in no minimum dominating set of trees and Cockayne et.al., [4] have characterized the set of vertices contained in all or in no total dominating set of trees (a total dominating set is a dominating set S where $\langle S \rangle$ has no isolated vertex).

In this paper, we investigate vertices belonging to all or to no minimum double-dominating set in a tree. Let us give some definition and notation.

For a tree T we define the sets $A_{x2}(T)$ and $N_{x2}(T)$ by

$A_{x2}(T) = \{v \in V(T) \mid v \text{ is in every } \gamma_{x2}(T)-\text{set}\}$, and

$N_{x2}(T) = \{v \in V(T) \mid v \text{ is in no } \gamma_{x2}(T)-\text{set}\}$.

The degree of a vertex \(v \), denoted by \(\text{deg}_G(v) \), is the number of vertices adjacent to \(v \) and the diameter of \(G \) is \(\text{diam}(G) = \max\{d(x,y) \mid x, y \in V(G)\} \) where \(d(x,y) \) is the length of the shortest path between \(x \) and \(y \). Specifically, for a vertex \(v \) in a rooted tree \(T \), we let \(\mathcal{C}(v) \) and \(\mathcal{D}(v) \) denote the set of children and descendants, respectively, of \(v \), and we define \(\mathcal{D}[v] = \mathcal{D}(v) \cup \{v\} \). The maximal subtree at \(v \) is the subtree of \(T \) induced by \(\mathcal{D}[v] \), and is denoted by \(T_v \). A leaf is a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We denote the set of leaves of \(T \) by \(L(T) \) and the set of support vertices by \(S(T) \). If \(T \) is a tree \(T \) rooted at a vertex \(v \), then we denote by \(L(v) \) the set of leaves of \(T \) distinct from \(v \), that is, \(L(v) = \mathcal{D}(v) \cap L(T) \). Also, a vertex of degree at least three is called a branch vertex, and we denote by \(B(T) \) the set of such vertices. For a vertex branch \(w \) of \(T_v \), we define \(\mathcal{P}^3(w) \) as the set of leaves \(u \in L(w) \) such that \(d(w,u) \equiv j \pmod{3} \) with \(j = 0,1,2 \), and every vertex of the \(w-u \) path different to \(w \) has degree at most two.

We give below some useful observations.

Observation 1. In any graph \(G \), every DDS contains all support and pendent vertices.

Observation 2. If \(P_n \) is a path with \(n \geq 2 \), then \(\gamma_{\times 2}(P_n) = 2n/3 + 1 \) if \(n \equiv 0 \pmod{3} \) and \(2 \lfloor n/3 \rfloor \) otherwise.

Observation 3. A path \(P_n \) with \(n \equiv 2 \pmod{3} \) has a unique minimum double dominating set.

The following lemma will be used in the next section.

Lemma 4. Let \(T' \) be a tree and \(v \) a vertex of \(V(T') \). If \(T \) is a tree obtained from \(T' \) by adding a path \(P_3 = xyz \) and an edge \(u \), where \(u \) is any leaf of \(T' \) such that \(v \notin N[u] \), then

(a) \(\gamma_{\times 2}(T) = \gamma_{\times 2}(T') + 2 \);

(b) \(v \in \mathcal{A}_{\times 2}(T') \) if and only if \(v \in \mathcal{A}_{\times 2}(T) \);

(c) \(v \in \mathcal{N}_{\times 2}(T') \) if and only if \(v \in \mathcal{N}_{\times 2}(T) \).

Proof. (a) By Observation 1, \(u \) and its support vertex are in every \(\gamma_{\times 2}(T') \)-set. Such a set can be extended to a DDS of \(T \) by adding \(\{y,z\} \), so \(\gamma_{\times 2}(T) \leq \gamma_{\times 2}(T') + 2 \). On the other hand, if \(D \) is any \(\gamma_{\times 2}(T) \)-set, then by Observation 1, \(z,y \in D \). Now if \(x \notin D \), then \(D' = D \cap V(T') \) contains \(u \) and is a DDS of \(T' \). If \(x \in D \), then \(|D'| = |D| - 3 \) and \(x \) can be replaced in \(D \) with \(u \) if \(u \notin D \) or with its support vertex in \(T' \), say \(w \), if \(u \in D \). In both cases, the resulting set is a DDS of \(T' \) of cardinality \(|D| - 2 \). Thus \(\gamma_{\times 2}(T') \leq \gamma_{\times 2}(T) - 2 \), implying that \(\gamma_{\times 2}(T) = \gamma_{\times 2}(T') + 2 \).

(b) Suppose that \(v \notin \mathcal{A}_{\times 2}(T') \). Let \(D' \) be a \(\gamma_{\times 2}(T') \)-set that does not contain \(v \). Since \(u \in D' \), \(D' \cup \{y,z\} \) is a \(\gamma_{\times 2}(T) \)-set that does not contain \(v \), and so \(v \notin \mathcal{A}_{\times 2}(T) \). Conversely, assume that \(v \in \mathcal{A}_{\times 2}(T') \) and let \(D \) be any \(\gamma_{\times 2}(T) \)-set with \(D' = D \cap V(T') \). If \(x \notin D \), then \(D' \) is an DDS of \(T' \) with \(|D'| = |D| - 2 \). Hence, \(D' \) is a \(\gamma_{\times 2}(T') \)-set with \(v \in D' \subset D \). If \(x \in D \), then as discussed in (a), \(x \) can be replaced by \(u \) or \(w \). Consequently, the resulting set is a \(\gamma_{\times 2}(T) \)-set that contains \(v \) since \(v \notin u \) and \(w \). Therefore \(v \in \mathcal{A}_{\times 2}(T) \).

(c) Suppose that \(v \notin \mathcal{N}_{\times 2}(T') \). Let \(D' \) be a \(\gamma_{\times 2}(T') \)-set that contains \(v \). Clearly, \(D' \cup \{y,z\} \) is a \(\gamma_{\times 2}(T) \)-set containing \(v \) so \(v \notin \mathcal{N}_{\times 2}(T) \). Conversely, suppose that \(v \in \mathcal{N}_{\times 2}(T') \) and let \(D \) be any \(\gamma_{\times 2}(T) \)-set with \(D' = D \cap V(T') \). If \(x \notin D \), then \(D' \) is a \(\gamma_{\times 2}(T') \)-set. Now if \(x \in D \), then as seen in proof of item (a), \(x \) can be replaced by \(u \) or \(w \). Thus the resulting set minus \(z \) and \(y \) is a \(\gamma_{\times 2}(T') \)-set. Now since \(v \neq u \) and \(v \neq w \), we deduce that \(v \in \mathcal{N}_{\times 2}(T) \).
2. The Pruning of a Tree

Let us first define for a tree T rooted at v the set $W^*(T_v)$ by:

$$W^*(T_v) = \{w^* \in C(v) \mid D(w^*) \cap B(T_v) = \emptyset, |P^2(w^*)| \geq 2 \text{ and } P^0(w^*) \cup P^1(w^*) = \emptyset\}$$

The following straightforward observations will be useful for the next.

Observation 5. Let T be a tree rooted at v with $|W^*(T_v)| \geq 2$, $C(v) - W^*(T_v) \neq \emptyset$, and let $w^* \in W^*(T_v)$. Then $v \in \mathcal{A}_{\geq 2}(T_v)$ (resp. $\mathcal{N}_{\geq 2}(T_v)$) if and only if $v \in \mathcal{A}_{\geq 2}(T'_v)$ (resp. $\mathcal{N}_{\geq 2}(T'_v)$) where T' is the tree obtained from T_v by removing, for every vertex $z \in W^*(T_v) - \{w^*\}$, z and all its descendants, that is $T'_v = T_v - \bigcup_{z \in W^*(T_v) - \{w^*\}} T_z$.

Observation 6. Let T be a tree rooted at v and $w^* \in W^*(T_v)$ with $|P^2(w^*)| \geq 3$. Then $v \in \mathcal{A}_{\geq 2}(T_v)$ (resp. $\mathcal{N}_{\geq 2}(T_v)$) if and only if $v \in \mathcal{A}_{\geq 2}(T'_v)$ (resp. $\mathcal{N}_{\geq 2}(T'_v)$) where T'_v is the tree obtained from T_v with replacing $D[w^*]$ with a P_5 of center w^*.

In order to characterize the sets $\mathcal{A}_{\geq 2}(T)$ and $\mathcal{N}_{\geq 2}(T)$ for any nontrivial tree T, we will use a technique called tree pruning introduced by Mynhardt [9] and used later by Cockayne, Henning and Mynhardt [4].

Let v be a vertex of a nontrivial tree T that is neither a support vertex nor a leaf. Using the process described below, with respect to the root v on every branch vertex, the tree T_v is transformed to another tree \tilde{T}_v, called the pruning of T_v, in which every vertex $u \notin W^*(T_v) \cup \{v\}$ has degree at most two. As a consequence, the properties of the vertex v to be in $\mathcal{A}_{\geq 2}(T)$ or $\mathcal{N}_{\geq 2}(T)$ will be preserved in \tilde{T}_v.

Let $T = T_v$ be a nontrivial tree rooted at a vertex v. If every vertex $u \notin W^*(T) \cup \{v\}$ has degree at most two then $\tilde{T}_v = T_v$. Otherwise, let u be a branch vertex at maximum distance from v. Then apply the following process:

- If $|P^1(u)| \geq 1$, then delete $D(u)$ and attach a path P_1 at u.

- If $|P^2(u)| \geq 1$, $|P^0(u)| \geq 1$ and $P^1(u) = \emptyset$, then delete $D(u)$ and attach a path P_1 at u.

- If $|P^2(u)| \geq 2$ and $P^0(u) \cup P^1(u) = \emptyset$, then
 - If $u \notin C(v)$, then delete $D(u)$ and attach two paths P_2 at u.
 - If $d(v, u) = 2$ and $p(u) \notin B(T)$, then delete $D(u)$ and attach a path P_2 at u.
 - If either $d(v, u) \geq 3$ or $d(u, v) = 2$ and $p(u) \in B(T)$, then delete $D[u]$.

- If $|P^0(u)| \geq 2$ and $P^1(u) \cup P^2(u) = \emptyset$, then delete $D(u)$ and attach a path P_3 at u.

To illustrate this technique, we consider the tree in Figure 1.(a) where v, w, u, x, y and z are the branch vertices of T. At this step, w is the the branch vertex at maximum distance from v, since $|P^1(w)| \geq 1$, we delete $D(w)$ and we attach a path P_1 at w. Then since y is the branch vertex at maximum distance from v and $|P^1(y)| \geq 1$, we delete $D(y)$ and we attach a P_1 at y. Now it remains three branch vertices z, u and x at distance one from v. Let us
consider z. Since $z \in C(v)$, $P^1(z) \cup P^0(z) = \emptyset$ and $|P^2(z)| \geq 2$, we delete $D(z)$ and we attach two paths P_2 at z. Now since $|P^0(x)| \geq 1$, $|P^2(x)| \geq 1$ and $P^1 = \emptyset$, then we delete $D(x)$ and we attach a P_1 at x. Finally since $|P^0(u)| \geq 2$ and $P^1(u) \cup P^2(u) = \emptyset$, we delete $D(u)$ and we attach P_3 at u.

Figure 1. The pruning of a tree rooted at v.

Lemma 7. Let T be a tree rooted at v and $u \neq v$ a branch vertex at maximum distance from v with $k_1 = |P^1(u)|$, $k_2 = |P^2(u)|$ and $k_3 = |P^0(u)|$. If

1. $k_1 \geq 1$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a P_1 to u.

2. $k_2 \geq 1$, $k_3 \geq 1$ and $k_1 = 0$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a P_1 to u.

3. $k_2 \geq 2$, $k_1 + k_3 = 0$ and $u \in C(v)$, let T' be the tree obtained from T by deleting $D(u)$ and attaching two paths P_2 to u.

4. $k_2 \geq 2$, $k_1 + k_3 = 0$, $d(v,u) = 2$ and $p(u) \notin B(T)$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a P_2 to u.

5. $k_2 \geq 2$, $k_1 + k_3 = 0$, and either $d(v,u) \geq 3$ or $p(u) \in B(T) - \{v\}$, let T' be the tree obtained from T by deleting $D(u)$.

6. $k_3 \geq 2$ and $k_1 + k_2 = 0$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a P_3 to u.

Then for each case we have:
(a) $v \in \mathcal{A}_{x_2}(T)$ if and only if $v \in \mathcal{A}_{x_2}(T')$.
(b) $v \in \mathcal{N}_{x_2}(T)$ if and only if $v \in \mathcal{N}_{x_2}(T')$.

Proof. We first note that Lemma 4 allows us to reduce the tree T_v by replacing every $u - x$ path of T with a $u - x$ path of length j, where $j = 3, 1, 2$ if $x \in P_i(u)$, $i = 0, 1, 2$, respectively. So we may assume that every leaf of T_v is at distance at most three from u.

Let a_i, t_ju_j and $x_ky_kz_k$ be paths of order 1, 2 and 3 respectively, attached to u where $a_i, u_j, z_k \in L(T) \cap D(u)$, for $0 \leq i \leq k_1$, $0 \leq j \leq k_2$ and $0 \leq k \leq k_3$. We consider the following cases:

Case 1. $k_1 \geq 1$.

Let $T' = T - (D(u) - \{a_1\})$. Since every $\gamma_{x_2}(T')$-set can be extended to a DDS of T by adding the set $X = \{a_i\} \cup \{t_ju_j\} \cup \{y_kz_k\}$ where $i \in \{2, \ldots, k_1\}$, $j \in \{1, \ldots, k_2\}$ and $k \in \{1, \ldots, k_3\}$, $\gamma_{x_2}(T) \leq \gamma_{x_2}(T') + (k_1 - 1) + 2k_2 + 2k_3$. On the other hand, if D is a $\gamma_{x_2}(T)$-set with $D' = D \cap T'$ then it is a routine matter to check that $D' = D - X$ is a DDS of T'. Thus $\gamma_{x_2}(T') \leq \gamma_{x_2}(T) - (k_1 - 1) - 2k_2 - 2k_3$ implying the equality.

(a) Suppose that $v \in \mathcal{A}_{x_2}(T')$ and let D be a $\gamma_{x_2}(T)$-set. As seen before $D' = D - X$ is a $\gamma_{x_2}(T')$-set. Thus $v \in D' \cap D$ and hence $v \in \mathcal{A}_{x_2}(T)$. Conversely, suppose that $v \in \mathcal{A}_{x_2}(T)$ and let S' be a $\gamma_{x_2}(T')$-set. Then $S = S' \cup X$ is a $\gamma_{x_2}(T)$-set, and so $v \in S$. Now since $v \notin D[u]$, $v \in S'$ and hence $v \in \mathcal{A}_{x_2}(T')$.

(b) Suppose that $v \in \mathcal{N}_{x_2}(T')$ and let D be an arbitrary $\gamma_{x_2}(T)$-set. We have seen that $D' = D - X$ is a $\gamma_{x_2}(T')$-set. So $v \notin D'$ and since $v \notin D[u]$, $v \in \mathcal{N}_{x_2}(T)$. Conversely, suppose that $v \in \mathcal{N}_{x_2}(T)$ and let S' be a $\gamma_{x_2}(T')$-set. Since $S = S' \cup X$ is a $\gamma_{x_2}(T)$-set, $v \notin S$. Since $v \notin D[u]$, $v \notin S'$ and hence $v \in \mathcal{N}_{x_2}(T')$.

The proof of item (b) will be omitted for the next since it is similar to the proof of item (a).

Case 2. $k_2 \geq 1$, $k_3 \geq 1$ and $k_1 = 0$.

Let $T' = T - (D(u) - \{t_1\})$. Then $\gamma_{x_2}(T) \leq \gamma_{x_2}(T') + 2(k_2 - 1) + 2k_3 + 1$ because every $\gamma_{x_2}(T')$-set can be extended to a DDS of T by adding the set $Y = \{u_1, t_j, u_j\} \cup \{y_kz_k\}$ where $j \in \{2, \ldots, k_2\}$ and $k \in \{1, \ldots, k_3\}$. Let D be an arbitrary $\gamma_{x_2}(T)$-set. If $u \notin D$, then $D' = D - Y$ is a DDS of T'. If $u \notin D$, then by minimality $k_3 = 1$, and so $x_1 \in D$. It follows that $D' = (D - \{u_1, t_j, u_j\} \cup \{x_1, y_k, z_k\}) \cup \{u\}$ where $2 \leq j \leq k_2$ is also a DDS of T'. Both cases yield $|D'| = |D| - 2(k_2 - 1) - 2k_3 - 1$. Thus $\gamma_{x_2}(T') \leq \gamma_{x_2}(T) - 2(k_2 - 1) - 2k_3 - 1$ implying the equality.

(a) Suppose that $v \in \mathcal{A}_{x_2}(T')$ and let D be a $\gamma_{x_2}(T)$-set. We have seen above that $D' = \{u\} \cup (D - \{u_1, t_j, u_j\} \cup \{x_1, y_kz_k\})$ where $2 \leq j \leq k_2$ and $1 \leq k \leq k_3$ is a $\gamma_{x_2}(T')$-set. Thus $v \in D'$ and since $v \notin D[u]$, $v \in D$. It follows that $v \in \mathcal{A}_{x_2}(T)$. Conversely, suppose that $v \in \mathcal{A}_{x_2}(T)$ and let S' be a $\gamma_{x_2}(T')$-set. Then $S = S' \cup \{u_1, t_j, u_j\} \cup \{y_kz_k\}$ where $2 \leq j \leq k_2$ and $1 \leq k \leq k_3$ is a $\gamma_{x_2}(T)$-set, so $v \in S$. Since $v \notin D[u]$, $v \in S'$, and so $v \in \mathcal{A}_{x_2}(T')$.

Case 3. $k_2 \geq 2$, $k_1 + k_3 = 0$ and $u \in C(v)$. Let $T' = T - (D(u) - \{t_1, u_1, t_2, u_2\})$.

This case follows from lemma 4 and observation 6.

Case 4. $k_2 \geq 2$, $k_1 + k_3 = 0$, $d(v, u) = 2$ and $p(u) \notin B(T)$. Let $T' = T - (D(u) - \{t_1, u_1\})$.

Then $\gamma_{x_2}(T) \leq \gamma_{x_2}(T') + 2(k_2 - 1)$ since any $\gamma_{x_2}(T')$-set is extended to a DDS of T by adding the set $X = \{t_j, u_j\}$ where $2 \leq j \leq k_2$. Now let D be an arbitrary $\gamma_{x_2}(T)$-set. If $u \in D$,
then $D - X$ is a DDS of T'. If $u \notin D$, then $p(u)$ must be in D and hence $D - X$ is a DDS of T', so $\gamma_{x_2}(T') \leq \gamma_{x_2}(T) - 2(k_2 - 1)$. Thus we have $\gamma_{x_2}(T') = \gamma_{x_2}(T) - 2(k_2 - 1)$.

(a) Suppose that $v \in A_{x_2}(T')$ and let D be an arbitrary $\gamma_{x_2}(T)$-set. We know that $D' = D - X$ is a $\gamma_{x_2}(T')$-set. Then $v \in D' \subset D$ and $v \in A_{x_2}(T)$. Conversely, suppose that $v \in A_{x_2}(T)$ and let S' be any $\gamma_{x_2}(T')$-set. We have seen that $S = S' \cup X$ is a $\gamma_{x_2}(T)$-set, so $v \in S$. Since $v \notin D[u]$, then $v \in S'$ and $v \in A_{x_2}(T')$.

Case 5. $k_2 \geq 2$, $k_1 + k_3 = 0$, and either $d(v, u) \geq 3$ or $p(u) \in B(T) - \{v\}$. Let $T' = T - D[u]$.

Clearly any $\gamma_{x_2}(T')$-set can be extended to a DDS of T' by adding the set $X = \{j, u_j\}$ where $j \in \{1, \ldots, k_2\}$, and so $\gamma_{x_2}(T) \leq \gamma_{x_2}(T') + 2k_2$. Now let D be a $\gamma_{x_2}(T)$-set. If $u \notin D$, then $D' = D - X$ is a DDS of T'. Assume now that $u \in D$. If $p(u) \notin D$, then $D'' = (D - (X \cup \{u\})) \cup \{p(u)\}$ is a DDS of T', else $(p(u) \in D)$, then by minimality $D''' = (D - (X \cup \{u\})) \cup \{x\}$ is a DDS of T'. Assume that $x \in N(p(u)) - \{v, u\}$, and hence $\gamma_{x_2}(T') \leq \gamma_{x_2}(T) - 2k_2$. It follows that $\gamma_{x_2}(T') = \gamma_{x_2}(T) - 2k_2$.

(a) Suppose that $v \in A_{x_2}(T')$ and let D be any $\gamma_{x_2}(T)$-set. We showed before depending on D that one of D', D'' or D''' is a $\gamma_{x_2}(T')$-set. Since $v \notin \{p(u), x\}$, v is in one of D', D'' or D''', so $v \in D$ and $v \in A_{x_2}(T)$. Conversely, suppose that $v \in A_{x_2}(T)$ and let S' be any $\gamma_{x_2}(T')$-set. We have seen that $S = S' \cup X$ is a $\gamma_{x_2}(T)$-set, so $v \in S$. Since $v \notin D[u]$, then $v \in S'$ and hence $v \in A_{x_2}(T')$.

Case 6. $k_3 \geq 2$ and $k_1 + k_3 = 0$. Let $T' = T - (D(u) - \{x_1, y_1, z_1\})$.

Let S' be a $\gamma_{x_2}(T')$-set. If $u \in S'$, then $S = S' \cup X$ where $X = \{y_k, z_k\}$ with $k \in \{2, \ldots, k_3\}$ is a DDS of T. Else, $x_1 \in S'$ and since u is dominated twice by x_1 and $p(u)$, then $S = (S' - \{x_1\}) \cup X \cup \{u\}$ is a DDS of T. Thus $\gamma_{x_2}(T) \leq \gamma_{x_2}(T') + 2(k_3 - 1)$. Now let D be any $\gamma_{x_2}(T)$-set. If $u \notin D$ then without loss of generality $x_k \notin D$ for $k \in \{2, \ldots, k_3\}$, and so $D' = D - X$ is a DDS of T'. If $u \notin D$, then by the minimality of D, $k_3 = 2$ and $\{x_1, x_2\} \subset D$. Thus $D''' = (D - \{x_2, y_2, z_2\}) \cup \{u\}$ is a DDS of T' of cardinality $\gamma_{x_2}(T) - 2(k_3 - 1)$ where $k_3 = 2$. It follows that $\gamma_{x_2}(T') \leq \gamma_{x_2}(T) - 2(k_3 - 1)$ and so $\gamma_{x_2}(T') = \gamma_{x_2}(T) - 2(k_3 - 1)$.

(a) Suppose that $v \in A_{x_2}(T')$ and let D be any $\gamma_{x_2}(T)$-set. Then depending on whether u is contained in D or no, D' or D'' respectively is a $\gamma_{x_2}(T')$-set. Since $v \notin D[u]$, $v \in D'$ (or D'') and hence $v \in D$. It follows that $v \in A_{x_2}(T)$. Conversely, suppose that $v \in A_{x_2}(T)$ and let S' be a $\gamma_{x_2}(T')$-set. As seen above S is a $\gamma_{x_2}(T)$-set, so $v \in S$. Since $v \notin D[u]$, $v \in S'$, so $v \in A_{x_2}(T')$.

3. Characterizations

The next theorem gives a necessary and sufficient condition for a vertex v of a nontrivial tree T to be in $A_{x_2}(T_v)$ (resp. in $N_{x_2}(T_v)$).

Theorem 8. Let T be a tree rooted at v such that $\deg(u) \leq 2$ for every $u \notin W^*(T) \cup \{v\}$. Then

a) $v \in A_{x_2}(T)$ if and only if at least one of the following conditions is verified:

- v is a support vertex;
- v is a leaf;
- $|P^1(v)| \geq 2$;
- $|P^0(v)| \geq 3$;
- \(|P^1(v)| = 1\) and \(|P^0(v)| \in \{1, 2\};
- \(|P^1(v)| = 1\), \(W^*(T) \neq \emptyset\) and \(P^2(v) \cup P^0(v) = \emptyset;\)
- \(|P^0(v)| = 2\) and \(|P^2(v)| \geq 1.\)

b) \(v \in N_{x,2}(T)\) if and only if \(|P^2(v)| \geq 2\) and \(P^1(v) \cup P^0(v) = \emptyset.\)

Proof. By Observation 1, the theorem is valid if \(v\) is a support vertex or a leaf. So suppose that \(v\) is neither a support vertex nor a leaf. By Lemma 4, the tree \(T_v\) can be reduced to a tree \(T_v^*\) by replacing each \(v - b\) path of \(T\) with a \(v - b\) path of length \(j\) where \(j = 3, 4, 2\) if \(b \in P^1(v)\) and \(i = 0, 1, 2\), respectively. Likewise for every \(w^* \in W^*(T_v)\) we replace every \(w^* - b\) path where \(b \in P^2(w^*)\) with a path of length two. Thus every leaf of \(T_v^*\) is at distance 2, 3 or 4 from \(v\) and hence by Lemma 4, \(v \in A_{x,2}(T_v^*)\) if and only if \(v \in A_{x,2}(T_v)\).

We first show the sufficient condition. Let \(D\) be an arbitrary \(\gamma_{x,2}(T)\)-set.

Case 1. \(|P^1(v)| \geq 2.\)

Let \(u\) and \(x\) be two vertices of \(P^1(v)\) where \(P_u = vu_1u_2u_3u\) and \(P_x = vx_1x_2x_3x\). Then by Observation 1, \(\{u, u_3, x_3, x_3\} \subset D.\) If \(v \notin D,\) then \(\{u_1, u_2, x_1, x_2\} \subset D.\) In this case \(D' = \{v\} \cup D - \{u_2, x_2\}\) is a DDS of \(T\) of cardinality \(|D| - 1,\) a contradiction. Thus \(v \in D\) and so \(v \in A_{x,2}(T).\)

Case 2. \(|P^0(v)| \geq 3.\)

Let \(u, x\) and \(w\) be three vertices of \(P^0(v)\) where \(P_u = vu_1u_2u_3u\) and \(P_x = vx_1x_2x\) and \(P_w = vw_1w_2w.\) Then \(\{u, u_2, x, x_2, w, w_2\} \subset D.\) Now if \(v \notin D,\) then \(\{u_1, x_1, w_1\} \subset D,\) and hence \(D' = \{v\} \cup D - \{x_1, w_1\}\) is a DDS of \(T\) of cardinality \(|D| - 1,\) a contradiction. Thus \(v \in D\) and so \(v \in A_{x,2}(T).\)

Case 3. \(|P^1(v)| = 1\) and \(|P^0(v)| \in \{1, 2\}.\)

Let \(u\) and \(x\) be two vertices of \(P^1(v)\) and \(P^0(v)\) where \(P_u = vu_1u_2u_3u\) and \(P_x = vx_1x_2x.\) Then \(\{u, u_3, x_2\} \subset D.\) Now if \(v \notin D,\) then \(\{u_1, u_2, x_1\} \subset D,\) and hence \(\{v\} \cup D - \{u_2, x_1\}\) is a DDS of \(T\) of cardinality less than \(|D|,\) a contradiction. It follows that \(v \in D\) and so \(v \in A_{x,2}(T).\)

Case 4. \(|P^1(v)| = 1, W^* \neq \emptyset\) and \(P^0(v) \cup P^2(v) = \emptyset.\)

Let \(u \in P^1(v)\) and \(w^* \in W^*(T)\) where \(P_u = vu_1u_2u_3u.\) Clearly \(w^*\) is dominated twice by its children. Now assume that \(v \notin D.\) Then \(V(P_u) \cup D[w^*] \subset D,\) but then \(\{v\} \cup D - \{u_2, w^*\}\) is a DDS of \(T\) of cardinality less than \(|D|,\) a contradiction. It follows that \(v \in D\) and so \(v \in A_{x,2}(T).\)

Case 5. \(|P^0(v)| = 2\) and \(|P^2(v)| \geq 1.\)

Let \(u, x \in P^0(v)\) and \(w \in P^2(v)\) where \(P_u = vu_1u_2u, P_x = vx_1x_2x\) and \(P_w = vw_1w.\) Then \(\{u, u_2, x, x_2, w, w_1\} \subset D.\) Now if \(v \notin D,\) then \(\{u_1, x_1\} \subset D\) which implies that \(\{v\} \cup D - \{x_1, u_1\}\) is a DDS of \(T\) of cardinality \(|D| - 1,\) a contradiction. Thus \(v \in D\) and so \(v \in A_{x,2}(T).\)

Case 6. \(|P^2(v)| \geq 2\) and \(P^1(v) \cup P^0(v) = \emptyset.\)

Note that \(W^*(T)\) may be non empty and every vertex (if any) of \(W^*(T)\) is dominated twice by its children. Then \(D\) is a unique \(\gamma_{x,2}(T)\)-set that does not contain \(v.\) It follows that \(v \in N_{x,2}(T).\)

In addition to the previous cases, we consider the following five cases to prove the necessary condition.
Theorem 9. Let \(v \) be a vertex of the tree \(T \), then

- \(v \in A_{x_2}(T) \) if and only if \(v \in A_{x_2}(T_v) \).
- \(v \in N_{x_2}(T) \) if and only if \(v \in N_{x_2}(T_v) \).
References

