ON WEAK AND RESTRAINED DOMINATION IN TREES

MUSTAPHA CHELLALI
Department of Mathematics, University of Blida.
B.P. 270, Blida, Algeria.
E-mail: m_cheballi@yahoo.com

Communicated by: Odile Favaron
Received 15 March 2005; accepted 17 May 2005

Abstract

In a graph \(G = (V, E) \) a vertex is said to dominate itself and all its neighbours. A weak dominating set is a set \(S \subseteq V \) where for every vertex \(u \) not in \(S \) there is a vertex \(v \) of \(S \) adjacent to \(u \) with \(d_G(v) \leq d_G(u) \). A restrained dominating set is a set \(S \subseteq V \) where every vertex in \(V - S \) is adjacent to a vertex in \(S \) as well as another vertex in \(V - S \). The weak domination number \(\gamma_w(G) \) (resp. restrained domination number \(\gamma_r(G) \)) is the minimum cardinality of a weak dominating set (resp. restrained dominating set). We determine sharp bounds for the weak and restrained domination numbers of a tree in terms of the domination number, the order, number of leaves and support vertices. More precisely, we show that if \(T \) is a tree of order \(n \geq 3 \) with \(\ell \) leaves and \(s \) support vertices, then \(\gamma_w(T), \gamma_r(T) \geq [(n + 2 + \ell - s)/3] \), and \(\gamma_w(T), \gamma_r(T) \geq \gamma(T) + \ell - s \geq [(n + 2 + 2\ell - 3s)/3] \) improving those of Hattingh and Rautenbach. We also show that \(\gamma_w(T) \leq [(n + 2\ell + 2s - 3)/3] \) and \(\gamma_r(T) \leq [(n + 2\ell + s + 1)/3] \).

Keywords: Domination, Weak domination, Restrained domination, Trees.

AMS Subject Classification: 05C69

1. Introduction

In a graph \(G = (V, E) \), the open neighborhood of a vertex \(v \in V \) is \(N(v) = \{u \in V \mid uv \in E\} \) and the closed neighborhood is \(N[v] = N(v) \cup \{v\} \). For a set \(S \subseteq V \), the open neighborhood is \(N(S) = \bigcup_{v \in S} N(v) \), the closed neighborhood is \(N[S] = N(S) \cup S \) and \(G[S] \) is the subgraph induced by the vertices of \(S \). The degree of a vertex \(v \) denoted by \(d_G(v) \) is the size of its open neighborhood. A vertex of degree one is called a pendent vertex or a leaf and its neighbor is called a support vertex. If \(v \) is a support vertex of a tree \(T \) then \(L_v \) will denote the set of the leaves attached at \(v \). A support vertex \(v \) is called strong if \(|L_v| > 1 \).

A set \(S \subseteq V \) is a dominating set if for each vertex \(v \in V - S \), \(N(v) \cap S \neq \emptyset \). The domination number \(\gamma(G) \) is the minimum cardinality of a dominating set.

In this paper, we are interested in two variations of domination called weak and restrained domination. A set \(S \subseteq V \) is a weak dominating set (WDS) if every vertex \(v \in V - S \) is adjacent to a vertex \(u \in D \) where \(d_G(v) \geq d_G(u) \). The weak domination number \(\gamma_w(G) \) is the minimum cardinality of a weak dominating set. A dominating set \(S \subseteq V \) is a restrained dominating set (RDS) if the subgraph induced by the vertices of \(V - S \) has no isolated vertices. The restrained
On weak and restrained domination in trees

The domination number \(\gamma_r(G) \) is the minimum cardinality of a restrained dominating set. An end-dominating set of \(G \) is a dominating set that contains all leaves of \(G \). The end-domination number \(\gamma_e(G) \) is the minimum cardinality of an end-dominating set. The concept of weak domination was introduced by Sampathkumar and Pushpa Latha [7], while the concept of restrained domination was introduced by Telle and Proskurowski [8], albeit as a vertex partitioning problem. For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi, and Slater [4], [5]. We make a couple of straightforward observations.

Observation 1. If \(v \) is a leaf of a graph \(G \), then \(v \) is in every weak and restrained dominating set.

Observation 2. If \(G \) is a connected graph then,

1) If \(n \geq 3 \) then \(\gamma_e(G) \leq \gamma_w(G) \).
2) \(\gamma_e(G) \leq \gamma_r(G) \).

In [3], Hattingh and Rautenbach have given a lower bound for the weak and restrained domination numbers in trees.

Theorem 3. (Hattingh and Rautenbach [3]) If \(T \) is a tree of order \(n \geq 1 \), then

a) \(\gamma_w(T) \geq \lceil (n+2)/3 \rceil \) for \(n \neq 2 \).

b) \(\gamma_r(T) \geq \lceil (n+2)/3 \rceil \).

In this paper we present different lower and upper bounds of the weak and restrained domination numbers of a tree in terms of the domination number, the order, the number of leaves and support vertices that improve those of Theorem 3.

2. Lower bounds

We begin by giving a lower bound on the end-domination number for every tree.

Theorem 4. If \(T \) is a tree with \(\ell \) leaves and \(s \) support vertices, then \(\gamma_e(T) \geq \lceil (n+2+\ell-s)/3 \rceil \).

Proof. We proceed by induction on the order \(n \). Clearly the result holds if \(diam(T) \in \{0,1\} \). If \(diam(T) = 2 \) then \(T \) is a star \(K_{1,n-1} \) where \(\gamma_e(T) = n-1 \geq \lceil (n+2+\ell-s)/3 \rceil = \lceil 2n/3 \rceil \), and hence the result is valid, establishing the base case.

Assume that every tree \(T' \) of order \(n' < n \) with \(\ell' \) leaves and \(s' \) support vertices satisfies \(\gamma_e(T') \geq \lceil (n'+2+\ell'-s')/3 \rceil \). Let \(T \) be a tree of order \(n \) with \(\ell \) leaves and \(s \) support vertices.

If any support vertex, say \(x \), of \(T \) is strong, then let \(T' \) be the tree obtained from \(T \) by removing a leaf adjacent to \(x \). Then \(\gamma_e(T') = \gamma_e(T) - 1, \ell' = \ell - 1 \) and \(s' = s \). Applying the inductive hypothesis to \(T' \), we obtain the desired result. Henceforth, we can assume that every support vertex of \(T \) is adjacent to exactly one leaf.

We now root \(T \) at a vertex \(r \) of maximum eccentricity \(diam(T) \geq 3 \). Let \(v \) be a support vertex at maximum distance from \(r \), \(u \) its parent in the rooted tree and \(S \) a \(\gamma_e(T) \)-set. Denote
by T_v the subtree induced by a vertex v and its descendants in the rooted tree T. We distinguish between two cases.

Case 1. $d_T(u) \geq 3$. Then either u is a support vertex of T or u has a child besides v as a support vertex. Let $T' = T - T_v$. Clearly, $n' = n - 2, \ell' = \ell - 1$ and $s' = s - 1$. Then S contains the leaf neighbor of v, say v' and without loss of generality $v \notin S$ else we can substitute it by u in S. Thus, $S - \{v\}$ is an end-dominating set of T', implying that $\gamma_e(T') \leq \gamma_e(T) - 1$. Applying the inductive hypothesis to T', it follows that

$$\gamma_e(T) \geq \gamma_e(T') + 1 \geq [(n' + 2 + \ell' - s')/3] + 1 = [(n + 3 + \ell - s)/3].$$

Case 2. $d_T(u) = 2$. Since $\text{diam}(T) \geq 3$, let w be the parent of u in the rooted tree. Let $T' = T - T_u$. Then $n' = n - 3$. The result is valid if $T = P_3$ or P_5, so let $n' \geq 3$. We can assume that $v' \in S, v \notin S, w \notin S$ (else replace v or u by w in S) and $w \in S$. Thus $S - \{v'\}$ is an end-dominating set of T', implying that $\gamma_e(T') \leq \gamma_e(T) - 1$. Now if $d_T(w) \geq 3$ then $\ell' = \ell - 1$ and $s' = s - 1$. If $d_T(w) = 2$, that is w is a leaf in T', then $\ell' = \ell$ and $s' \leq s$. In any case, it follows by induction on T' that:

$$\gamma_e(T) \geq \gamma_e(T') + 1 \geq [(n' + 2 + \ell' - s')/3] + 1 = [(n + 2 + \ell - s)/3].$$

This achieves the proof.

According to Observation 2 and Theorem 4, we have the following corollary:

Corollary 5. If T is a tree of order $n \geq 1$, then

a) $\gamma_w(T) \geq [(n + 2 + \ell - s)/3]$ for $n \neq 2$.

b) $\gamma_r(T) \geq [(n + 2 + \ell - s)/3]$.

Clearly since $\ell - s \geq 0$ for every tree, Corollary 5 improves Theorem 3.

Proposition 6. If T is a tree of order at least three with ℓ leaves and s support vertices, then $\gamma_e(T) \geq \gamma(T) + \ell - s$.

Proof. Let $L(T)$ and $S(T)$ denote the set of leaves and support vertices of T, respectively. Then since every $\gamma_e(T)$-set D contains $L(T)$, $(D - L(T)) \cup S(T)$ is a dominating set of T. Hence

$$\gamma(T) \leq |D| - \ell + s. \qed$$

Recall that the connected domination number of a graph G denoted by $\gamma_c(G)$ is the minimum cardinality of a dominating set whose induced subgraph is connected. In [1], Duchet and Meyniel proved that every connected graph G, satisfies $\gamma(G) \geq (\gamma_c(G) + 2)/3$. Since $\gamma_c(T) = n - \ell$ for every tree T, it follows that $\gamma(T) \geq (n + 2 - \ell)/3$. Note that extremal trees have been characterized by Lemańiska [6]. Using this lower bound and Proposition 6, we have:

Corollary 7. If T is a tree of order at least three with ℓ leaves and s support vertices, then $\gamma_e(T) \geq [(n + 2\ell - 3s + 2)/3]$.

By Observation 2, Proposition 6 and Corollary 7, we obtain a second lower bound on $\gamma_w(T)$ and $\gamma_r(T)$ which improves Corollary 5 for $\ell > 2s$.\[\text{Mustapha Chellali}\]
Corollary 8. If T is a tree of order $n \geq 3$, then

a) $\gamma_w(T) \geq \gamma(T) + \ell - s - \left\lceil (n + 2 + 2\ell - 3s)/3 \right\rceil$, and

b) $\gamma_r(T) \geq \gamma(T) + \ell - s - \left\lceil (n + 2 + 2\ell - 3s)/3 \right\rceil$.

All inequalities in Corollary 8 are attained. For example, let T be the tree obtained from a path P_3 by attaching a center vertex of a star $K_{1,3}$ at each leaf of the path. Then $n = 11, \ell = 6, s = 2$, $\gamma(T) = 3$ and $\gamma_w(T) = \gamma_r(T) = 7$.

3. Upper bounds

We give in this section an upper bound for the weak and restrained domination numbers of a nontrivial tree.

Theorem 9. If T is a nontrivial tree with n vertices, ℓ leaves and s support vertices, then $\gamma_w(T) \leq \left\lceil (n + 2\ell + 2s - 3)/3 \right\rceil$, and this bound is sharp.

Proof. We proceed by induction on $n \geq 2$. Clearly the result is valid if $T = P_2$. If T is a star $K_{1,p}(p \geq 2)$, then $\gamma_w(T) = p = \left\lceil (n + 2\ell + 2s - 3)/3 \right\rceil$, and hence the result holds. Assume that every tree T' of order $2 \leq n' < n$ satisfies $\gamma_w(T') \leq \left\lceil (n' + 2\ell' + 2s' - 3)/3 \right\rceil$. Let T be a tree of order n.

Root T at a vertex r of maximum eccentricity $\text{diam}(T) \geq 3$. Let v be a support vertex at maximum distance $\text{diam}(T) - 1$ from r and u the parent of v. We consider the following two cases:

Case 1. $d_T(u) \geq 3$, that is u is either a support vertex or has a child besides v as a support vertex. Let $T' = T - T_v$. Then $n' = n - |L_v| - 1 \geq 3$, $\ell' = \ell - |L_v|$ and $s' = s - 1$. Let S' be any $\gamma_w(T')$-set. Then S' can be extended to a WDS of T by adding the set of leaves L_v with a possibility to replace u (if $u \in S'$) by its parent since its degree will be increased in T. Such a substitution is possible since the goal of u in S' is either to weakly dominate itself or its parent. So $\gamma_w(T) \leq \gamma_w(T') + |L_v|$. Now by induction on T' we obtain:

$$\gamma_w(T) \leq \left\lceil (n' + 2\ell' + 2s' - 3)/3 \right\rceil + |L_v| = \left\lceil (n + 2\ell + 2s - 6)/3 \right\rceil$$

Case 2. $d_T(u) = 2$. Since $\text{diam}(T) \geq 3$, let w be the parent of u. If $d_T(w) = 1$, then T is a double star $S_{L_v,1}$ and the result holds. Assume that $d_T(w) \geq 3$. Seeing Case 1, we suppose that every subtree rooted at a child of w is a star. If $d_T(w) \geq 4$ or $d_T(w) = 3$ and every leaf of $V(T_w) - L_v$ is at distance one or two from w, then let $T' = T - T_u$ and S' be any $\gamma_w(T')$-set. If $w \notin S'$, then S' can be extended to a WDS of T by adding the set $L_v \cup \{u\}$. Assume now that $w \in S'$. Then w weakly dominates itself or its parent and so S' can be extended to a WDS of T (possibly by replacing w by its parent) by adding the set $L_v \cup \{u\}$. In any case, $\gamma_w(T) \leq \gamma_w(T') + |L_v| + 1$. By induction on T', and since $n' = n - |L_v| - 2$, $s' = s - 1$ and $\ell' = \ell - |L_v|$, we obtain:

$$\gamma_w(T) \leq \gamma_w(T') + |L_v| + 1 \leq \left\lceil (n' + 2\ell' + 2s' - 3)/3 \right\rceil + |L_v| + 1 = \left\lceil (n + 2\ell + 2s - 4)/3 \right\rceil.$$

Now we examine the case, $d_T(w) = 3$ and every leaf in T_w is at distance three from w. Let y be the second support vertex at distance two from w in T_w. Clearly seeing Case 1, the parent of
Let \(T' = T - (T_v \cup T_y) \). Then \(n' = n - |L_v| - |L_y| - 2 \), \(s' \leq s - 1 \) and \(\ell' = \ell - |L_v| - |L_y| + 2 \). Since every \(\gamma_w(T') \)-set contains \(u \) and \(z \), such a set can be extended to a WDS of \(T \) by adding the set \(L_v \cup L_y \), and so \(\gamma_w(T) \leq \gamma_w(T') + |L_v| + |L_y| \). By induction on \(T' \), we have:

\[
\gamma_w(T) \leq \gamma_w(T') + |L_v| + |L_y| \leq \left\lfloor \frac{(n' + 2\ell' + 2s' - 3)}{3} \right\rfloor + |L_v| + |L_y|
= \left\lfloor \frac{(n + 2\ell + 2s - 3)}{3} \right\rfloor.
\]

Finally, assume that \(d_T(w) = 2 \) and let \(T' = T - T_u \). Then \(n' = n - |L_v| - 2 \). It is a routine matter to check the result if \(n' = 1 \) or \(2 \). Thus assume that \(n' \geq 3 \). Since every \(\gamma_w(T') \)-set \(S' \) contains \(w \), such a set can be extended to a WDS of \(T \) by adding the set \(L_v \). Hence \(\gamma_w(T) \leq \gamma_w(T') + |L_v| \). Applying the induction on \(T' \), and since \(\ell' = \ell - |L_v| + 1 \) and \(s' \leq s \) we have:

\[
\gamma_w(T) \leq \gamma_w(T') + |L_v| \leq \left\lfloor \frac{(n' + 2\ell' + 2s' - 3)}{3} \right\rfloor + |L_v|
= \left\lfloor \frac{(n + 2\ell + 2s - 3)}{3} \right\rfloor.
\]

The bound is attained for stars and paths \(P_{3k+2}(k \geq 1) \).

Theorem 10. If \(T \) is a nontrivial tree with \(n \) vertices, \(\ell \) leaves and \(s \) support vertices, then \(\gamma_r(T) \leq \left\lfloor \frac{(n + 2\ell + s + 1)}{3} \right\rfloor \), and this bound is sharp.

Proof. Again, we proceed by induction on \(n \geq 2 \). It is a routine matter to check the result if \(\text{diam}(T) \in \{1, 2, 3\} \). Assume that every tree \(T' \) of order \(2 \leq n' < n \) satisfies \(\gamma_r(T') \leq \left\lfloor \frac{(n' + 2\ell' + s' + 1)}{3} \right\rfloor \), and let \(T \) be a tree of order \(n \).

If \(T \) contains a strong support vertex, then let \(T' \) be the tree obtained from \(T \) by removing a leaf adjacent to a strong support vertex. Then \(\gamma_r(T') = \gamma_r(T) - 1, n' = n - 1, \ell' = \ell - 1 \) and \(s' = s \). The result follows by induction on \(T' \). Hence we assume that \(T \) contains no strong support vertex.

Root \(T \) at a vertex \(r \) of maximum eccentricity \(\text{diam}(T) \geq 4 \). Let \(v \) be a support vertex at maximum distance \(\text{diam}(T) - 1 \) from \(r \), \(u \) the parent of \(v \) and \(w \) the parent of \(u \) in the rooted tree. We distinguish between cases:

Case 1. \(d_T(u) \geq 3 \). Let \(T' = T - T_u \). Then \(n' = n - 2d_T(u) + 2 - i \), where \(i = 1 \) if \(u \) is not a support vertex and \(i = 0 \) else. Since the result holds for \(0 \leq n' \leq 2 \), we assume that \(n' \geq 3 \). Let \(S' \) be any \(\gamma_r(T') \)-set. If \(w \notin S \), then \(S' \) can be extended to a RDS of \(T' \) by adding the leaves of \(T_u \), and possibly \(v \) if \(u \) is a support vertex. Hence \(\gamma_r(T) \leq \gamma_r(T') + d_T(u) - 1 + i \). Since \(w \notin S' \), the degree of \(w \) in \(T \) must be equal to at least three. So \(\ell' = \ell - (d_T(u) - 1) \) and \(s' = s - (d_T(u) - 1) \). By induction on \(T' \),

\[
\gamma_r(T) \leq \gamma_r(T') + d_T(u) - 1 + i \leq \left\lfloor \frac{(n' + 2\ell' + s' + 1)}{3} \right\rfloor + d_T(u) - 1 + i
= \left\lfloor \frac{(n + 2\ell + s + 1 + 2 + 2i - 2d_T(u))}{3} \right\rfloor.
\]

Thus \(\gamma_r(T) \leq \left\lfloor \frac{(n + 2\ell + s + 1)}{3} \right\rfloor \) since \(d_T(u) \geq 3 \).

Now if \(w \in S' \), then \(S' \) can be extended to a RDS of \(T \) by adding the leaves of \(T_u \), and hence \(\gamma_r(T) \leq \gamma_r(T') + d_T(u) - 1 \). Likewise, since \(\ell' \leq \ell - (d_T(u) - 1) + 1 \) and \(s' \leq s - (d_T(u) - 1) + 1 \), the result follows by induction on \(T' \), and we obtain \(\gamma_r(T) \leq \left\lfloor \frac{(n + 2\ell + s + 1 + 5 - 2d_T(u) - i)}{3} \right\rfloor \leq \left\lfloor \frac{(n + 2\ell + s + 1)}{3} \right\rfloor \).

Case 2. \(d_T(u) = 2 \). Let \(T' = T - T_u \). Clearly the result holds if \(n' = (n - 3) \in \{1, 2\} \). So assume that \(n' \geq 3 \). Let \(S' \) be any \(\gamma_r(T') \)-set. If \(w \in S' \) then \(S' \) is extended to a RDS of \(T \) by
adding the leaf adjacent to v. Hence $\gamma_r(T) \leq \gamma_r(T') + 1$. By induction on T', and since $\ell' \leq \ell$ and $s' \leq s$, we obtain $\gamma_r(T) \leq \gamma_r(T') + 1 \leq [(n + 2\ell + s + 1)/3]$.

If $w \not\in S'$ then S' is extended to a RDS of T by adding v and its leaf. So $\gamma_r(T) \leq \gamma_r(T') + 2$. Since $w \not\in S'$, $\deg_T(w) \geq 3$, and so $\ell' = \ell - 1$ and $s' = s - 1$. Now by induction on T', we have $\gamma_r(T) \leq \gamma_r(T') + 2 \leq [(n + 2\ell + s + 1)/3]$.

The bound is attained for stars and the path P_6.

Recall that the independent domination number $i(G)$ of a graph G is the minimum cardinality of a set S of vertices that is both dominating and independent. The following result is due to Favaron [2]:

Theorem 11. (Favaron [2]) If T is a tree of order $n \geq 3$ with ℓ leaves, then $i(T) \leq [(n + \ell)/3]$.

Using Theorem 11, one can see that $\gamma(T) \leq [(n + s)/3]$ holds for every tree T of order $n \geq 3$ with s support vertices.

According to Corollary 8- (b) and Theorem 10, we have the following corollary which also strengthens the above upper bound on $\gamma(T)$ for $\ell \geq 3s + 3$.

Corollary 12. If T is a tree of order $n \geq 3$, then

$$\gamma(T) \leq \min\{[(n + s)/3], [(n - \ell + 4s + 1)/3]\}.$$

References

