RESTRAINED DOUBLE DOMINATION NUMBER OF A GRAPH

R. KALA
Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli-627 012, Tamil Nadu, India.

and

T. R. NIRMALA VASANTHA
Department of Mathematics
Holy Cross College
Nagercoil-629 004, Tamil Nadu, India.
e-mail: vasanthadominic@yahoo.com

Communicated by: S. Arumugam
Received 21 February 2007; revised 11 December 2007; accepted 17 December 2007

Abstract

A set $S \subseteq V(G)$ is a restrained double dominating set for G if every vertex in V is dominated by at least two vertices in S and $\langle V - S \rangle$ has no isolated vertices. The minimum cardinality of a minimal restrained double dominating set is the restrained double domination number and is denoted by $\gamma_{2r}(G)$. In this paper we initiate a study of this parameter and obtain some bounds for $\gamma_{2r}(G)$ and characterize the graphs attaining these bounds. We also derive Nordhaus–Gaddum type results for $\gamma_{2r}(G)$.

Keywords: Domination; Double domination; Restrained domination; Restrained double domination; Restrained double domination number.

2000 Mathematics Subject Classification: 05C69

1. Introduction

By a graph $G = (V, E)$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretical terms we refer to Harary [4] and for terms related to domination we refer to Haynes et al. [5].

A subset S of V is said to be a dominating set in G if every vertex in $V - S$ is adjacent to at least one vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G.

The concept of restrained domination was introduced by Telle and Proskurowski [7] indirectly as a vertex partitioning problem. Cyman and Raczek [1] introduced the concept
of total restrained domination. A restrained dominating set is a set \(S \subseteq V \) where every vertex in \(V - S \) is adjacent to a vertex in \(S \) as well as to another vertex in \(V - S \). The smallest cardinality of a restrained dominating set \(S \) of \(G \) is called the restrained domination number of \(G \) and is denoted by \(\gamma_r(G) \). A restrained dominating set \(S \) with \(|S| = \gamma_r \) is called a \(\gamma_r \)-set.

Harary and Haynes [3] introduced the concept of double domination number of a graph. A set \(S \subseteq V \) is a double dominating set for \(G \) if every vertex in \(V \) is dominated by at least two vertices of \(S \). The minimum cardinality of a double dominating set is the double domination number of \(G \) and is denoted by \(dd(G) \).

In this paper we define restrained double domination number \(\gamma_2r(G) \) and initiate a study of this parameter. We obtain some bounds for \(\gamma_2r(G) \) and characterize the graphs attaining these bounds. We also derive Nordhaus–Gaddum type results for \(\gamma_2r(G) \). We need the following.

Definition 1.1. The graph obtained by joining the centres of two stars \(K_{1,r} \) and \(K_{1,s} \) by an edge is defined to be a bistar and is denoted by \(B(r, s) \).

Theorem 1.2. [2] Let \(G \) be a connected graph of order \(p \). Then \(\gamma_r(G) = p \) if and only if \(G \) is a star and for any graph \(G \), \(\gamma_r(G) = p \) if and only if \(G \) is a galaxy (disjoint union of stars).

Theorem 1.3. [2] If \(T \) is a tree of order \(p \geq 3 \) then \(\gamma_r(T) = p - 2 \) if and only if \(T \) is obtained from \(P_4, P_5 \) or \(P_6 \) by adding zero or more pendent vertices to the supports.

Theorem 1.4. [2] Let \(G \) be a connected graph of order \(p \) containing a cycle. Then \(\gamma_r(G) = p - 2 \) if and only if \(G \) is \(C_4, C_5 \), or \(G \) can be obtained from \(C_3 \) by attaching zero or more pendent vertices to at most two of the vertices of the cycle.

Theorem 1.5. [6] If \(G \) is any connected graph with \(\delta(G) = 1 \) such that \(G \not\cong K_{1,p-1} \), then \(\gamma_r(G) \) is equal to the number of pendent vertices of \(G \) if and only if every nonpendent vertex in \(G \) is a support.

Theorem 1.6. [2] If \(k \geq 1 \) is an integer and \(r \in \{1, 2, 3\} \) then \(\gamma_r(C_{3k+r}) = k + r \).

2. Main Results

Definition 2.1. A set \(S \subseteq V(G) \) is a restrained double dominating set for \(G \) if every vertex in \(V \) is dominated by at least two vertices in \(S \) and \((V - S) \) has no isolated vertices. The minimum cardinality of a minimal restrained double dominating set is called the restrained double domination number of \(G \) and is denoted by \(\gamma_2r(G) \).

Example 2.2.

(i) \(\gamma_2r(K_p) = 2 \) for \(p \neq 3 \) and \(\gamma_2r(K_3) = 3 \).

(ii) \(\gamma_2r(K_{1,p-1}) = p \).
(iii) For the Petersen graph G, $\gamma_{2r}(G) = 6$.

(iv) $\gamma_{2r}(C_p) = p$ for all p.

(v) $\gamma_{2p}(W_p) = p - 2k$ when $p = 3k + r$, $0 \leq r \leq 2$. Let u be the central vertex of W_p and $v_1, v_2, \ldots v_{p-1}$ be the vertices of C_{p-1}. By Theorem 1.6, $\gamma_r(C_p) = k + r$. Since u is adjacent to every other vertex $\gamma_{2r}(W_p) = \gamma_r(C_p) = k + r = p - 2k$.

(vi) $\gamma_{2r}(K_{m,n}) = 4$ when $3 \leq m \leq n$.

Remarks 2.3.

(i) Every graph G without isolated vertices has a restrained double dominating set, as $V(G)$ is such a set for G.

(ii) If S is any restrained double dominating set of G then S contains all pendent vertices, supports and vertices of degree two. Hence it follows from Theorem 1.5 if $\gamma_r(G)$ is equal to the number of pendent vertices then $\gamma_{2r}(G) = p$.

(iii) For any graph G with $\delta(G) \geq 3$, $\gamma_{2r}(G) \leq p - 2$.

(iv) It follows from Theorems 1.3 and 1.4 that there is no graph G with $\gamma_r(G) = \gamma_{2r}(G) = p - 2$.

(v) For a graph G without isolated vertices, $\gamma_r(G) \leq \gamma_{2r}(G)$ and by Theorem 1.2, $\gamma_r(G) = \gamma_{2r}(G) = p$ if and only if G is a galaxy.

(vi) If G is any graph without isolated vertices and G is not a galaxy, then $\gamma_r(G) \neq \gamma_{2r}(G)$. By Theorem 1.2, if $\gamma_{2r}(G) = p$ then $\gamma_r(G) < p$. Suppose $\gamma_{2r}(G) \leq p - 2$. Let S be a γ_{2r}-set of G and let $u \in V - S$. For any $w \in N(v) \cap S$, $S - \{w\}$ is a restrained dominating set of G so that $\gamma_r(G) < \gamma_{2r}(G)$.

Theorem 2.4. Let G be a graph without isolated vertices and let P be the set of all pendent vertices and supports of G (P may be empty). Then $2 \leq \gamma_{2r}(G) \leq p$. Lower bound is attained if and only if $G \cong K_2$ or G has at least two vertices with full degree and $\delta(G) \geq 3$. Upper bound is attained if and only if for every edge (u, v) in $(V(G) - P)$, either of $\deg u$, $\deg v$ is two or $\delta((V(G) - \{u, v\})) = 0$.

Proof. Clearly $2 \leq \gamma_{2r}(G) \leq p$. Suppose $\gamma_{2r}(G) = 2$ and let $S = \{u, v\}$ be a γ_{2r}-set. Then $\deg u = \deg v = p - 1$ and $(V - S)$ has no isolated vertices and so $\delta(G) \geq 3$. Converse is obvious.

Assume $\gamma_{2r}(G) = p$. If there exists an edge (u, v) in $(V(G) - P)$ with $\deg u \geq 3, \deg v \geq 3$ and $\delta((V(G) - \{u, v\})) > 0$ then $V(G) - \{u, v\}$ is a restrained double dominating set which is a contradiction.

Conversely let S be a γ_{2r}-set of G. We claim that $S = V$. If not there exists $u, v \in V - S$ such that u and v are adjacent in G. Then $\deg u \geq 3$, $\deg v \geq 3$ and $\delta((V(G) - \{u, v\})) \neq 0$ which is a contradiction. Hence $\gamma_{2r}(G) = p$. □
We now prove the following theorem whose proof technique is similar to that in [1].

Theorem 2.5. Let G be a graph without isolated vertices. Then $\gamma_{2r}(G) \geq \frac{5p-2q}{4}$ and the bound is attained for the graph G_1 given in Figure 1.

![Figure 1](image)

Proof. Let S be a γ_{2r}-set. Every vertex in $V - S$ is adjacent to at least two vertices in S and one vertex in $V - S$. Also every vertex in S must have at least one neighbor in S. Hence

$$q \geq 2|V - S| + \frac{|V - S| + \gamma_{2r}(G)}{2}$$

$$= \frac{5}{2}|V - S| + \frac{\gamma_{2r}(G)}{2}$$

$$= \frac{5}{2}(p - \gamma_{2r}(G)) + \frac{\gamma_{2r}(G)}{2}.$$

Thus $2q \geq 5p - 4\gamma_{2r}(G)$, so that $\gamma_{2r}(G) \geq \frac{5p-2q}{4}$. The bound is attained if $G \cong G_1$. \qed

Theorem 2.6. If G has no isolated vertices, then $\gamma_{2r}(G) \geq \frac{2p}{\Delta(G)+1}$.

Proof. Let S be a γ_{2r}-set of G. Let s be the number of edges with one end in S and the other end in $V - S$. Since every vertex in S has at least one neighbor in S,

$$s \leq (\Delta(G) - 1)|S| = (\Delta(G) - 1)\gamma_{2r}(G).$$

Also every vertex in $V - S$ is adjacent to at least two vertices in S and so $s \geq 2|V - S| = 2(p - \gamma_{2r}(G))$.

Thus $2p - 2\gamma_{2r}(G) \leq (\Delta(G) - 1)\gamma_{2r}(G)$ and hence $\gamma_{2r}(G) \geq \frac{2p}{\Delta(G)+1}$.

The bound is attained for the graphs mK_2 and $K_p (p \geq 2)$. So the bound is sharp. \qed

Theorem 2.7. Let $G = (X, Y)$ be a connected bipartite graph with $|X| = m$ and $|Y| = n$, $2 \leq m \leq n$. Then $\gamma_{2r}(G) = p$ if and only if either $\Delta(G) \leq 2$ or for every $v \in V(G)$ with $\deg v \geq 3$, whenever $u \in N(v)$ either $\deg u \leq 2$ or u is a support.
Proof. Let $\gamma_2^r(G) = p$ and $\Delta(G) \geq 3$. If there exist vertices $u, v \in V(G)$ such that v is not a support, $u \in N(v)$, $\deg v \geq 3$ and $\deg u \geq 3$, then $V(G) - \{u, v\}$ is a restrained double dominating set which is a contradiction.

Converse follows by Remark 2.3 (ii).

Theorem 2.8. Let G be a cubic connected graph. Then $\gamma_2^r(G) = 2$ if and only if $G \cong K_4$ and $\gamma_2^r(G) = 4$ if and only if $G \cong G_i (1 \leq i \leq 5)$ where G_i are given in Figure 2.

![Figure 2](image-url)

Proof. Suppose $\gamma_2^r(G) = 2$. Since G is a cubic graph, by Theorem 2.4, $G \cong K_4$. Converse is obvious.

Suppose $\gamma_2^r(G) = 4$. Let $S = \{u, v, w, x\}$ be a γ_2^r-set.

Case (i) $\langle S \rangle$ contains a path of length 3.

In $\langle S \rangle$, $\deg v = \deg w = 2$. Let y and z be the neighbors of v and w in $V - S$ respectively. Since G is cubic, $|V - S| = 2$. Hence u and x are adjacent. Obviously y and z are adjacent. If y is adjacent to u and z is adjacent to x then $G \cong G_1$. If y is adjacent to x and z is adjacent to u then $G \cong G_2$.

Case (ii) $\langle S \rangle$ does not contain a path of length 3.
In this case \(\langle S \rangle \cong 2K_2 \). Without loss of generality, let \(u \) and \(v \) be adjacent and \(w \) and \(x \) be adjacent. Clearly \(|V - S| = 4 \). If \(u \) and \(v \) have two common neighbors in \(V - S \) then \(w \) and \(x \) also have two common neighbors and so \(G \cong G_3 \).

If \(u \) and \(v \) have only one common neighbor say \(s \), then \(w \) and \(x \) have only one common neighbor \(t \).

Let \(w_1 \in N(u) \cap (V - S) \) (\(w_1 \) is different from \(t \)) and \(v_1 \in N(v) \cap (V - S) \) (\(v_1 \) is different from \(s \)). Without loss of generality let \(w_1 \in N(w) \) and \(v_1 \in N(x) \). If \(s \in N(w_1) \) and \(v_1 \in N(t) \), then \(G \cong G_3 \). If \(s \in N(v_1) \) and \(w_1 \in N(t) \), then also \(G \cong G_3 \). If \(s \in N(t) \) and \(w_1 \in N(v_1) \), then \(G \cong G_4 \).

If \(u \) and \(v \) do not have common neighbors, then \(w \) and \(x \) also do not have common neighbors.

Let \(u_1 \in N(u) \cap (V - S), v_1 \in N(v) \cap (V - S), w_1 \in N(w) \cap (V - S) \) and \(x_1 \in N(x) \cap (V - S) \). Without loss of generality let \(u_1 \in N(u), v_1 \in N(x), w_1 \in N(w) \) and \(x_1 \in N(v) \).

If \(u_1 \) and \(v_1 \) are adjacent and \(w_1 \) and \(x_1 \) are adjacent, then \(G \cong G_5 \). If \(u_1 \) and \(w_1 \) are adjacent and \(v_1 \) and \(x_1 \) are adjacent, then \(G \cong G_3 \). If \(u_1 \) and \(x_1 \) are adjacent and \(v_1 \) and \(w_1 \) are adjacent then \(G \cong G_5 \). Converse is obvious.

Proposition 2.9. There exists no connected cubic graph \(G \), with \(\gamma_{2r}(G) = 3 \).

Proof. Let \(S \) be a \(\gamma_{2r} \)-set with \(|S| = 3 \). Clearly \(\langle S \rangle \cong P_3 = (u, v, w) \). Let \(y \) be the neighbor of \(v \) in \(V - S \). Without loss of generality let \(y \in N(u) \). Since \(y \) has a neighbor in \(V - S \), there exists \(x \in V - S \) such that \(x \in N(u) \cap N(w) \). But then \(\deg w = 2 \) and so there exists no connected cubic graph with \(\gamma_{2r}(G) = 3 \).

Theorem 2.10. If \(T \) is a tree such that \(\overline{T} \) has no isolated vertices, then \(\gamma_{2r}(T) + \gamma_{2r}(\overline{T}) \leq 2p \). Equality holds if and only if \(T \cong P_4, P_5 \) or \(B(2, 1) \).

Proof. Obviously, \(\gamma_{2r}(T) + \gamma_{2r}(\overline{T}) \leq 2p \). Suppose \(\gamma_{2r}(T) + \gamma_{2r}(\overline{T}) = 2p \).

We claim that \(\text{diam}(T) = 3 \) or \(4 \). Clearly \(\text{diam}(T) \geq 3 \). Suppose \(\text{diam}(T) = d \geq 5 \) and let \(v_1, v_2, \ldots, v_{d+1} \) be the diametrical path in \(T \). Now \(V(T) - \{v_1, v_{d+1}\} \) is a restrained double dominating set of \(T \) which is a contradiction and so \(\text{diam}(T) = 3 \) or \(4 \).

Suppose \(\text{diam}(T) = 3 \). Let \((u, u_1, v_1, v) \) be the diametrical path. If \(\deg u_1 = \deg v_1 = 2, T \cong P_4 \). If \(\deg u_1 \geq 4 \) or if \(\deg u_1 = 3 \) and \(\deg v_1 \geq 3 \), then we get a restrained double dominating set of \(T \) with cardinality \(p - 2 \) and so \(T \cong B(2, 1) \).

If \(\text{diam}(T) = 4 \), then \(T \cong P_5 \), since in all other cases we get a restrained dominating set of \(T \) with cardinality \(p - 2 \).

Theorem 2.11. Let \(G \) be a connected unicyclic graph such that \(\overline{G} \) has no isolated vertices. Then \(\gamma_{2r}(G) + \gamma_{2r}(\overline{G}) \leq 2p \) and equality holds if and only if \(G \cong C_4, C_5 \) or \(G_i(1 \leq i \leq 4) \) where \(G_i \) are given in Figure 3.
Proof. Clearly \(\gamma_{2r}(G) + \gamma_{2r}(\bar{G}) \leq 2p \). Suppose \(\gamma_{2r}(G) + \gamma_{2r}(\bar{G}) = 2p \) and let \(C_n = (v_1, v_2, \ldots, v_n = v_1) \) be the cycle in \(G \). If \(n \geq 6 \), \(V(G) - \{v_2, v_5\} \) is a restrained double dominating set of \(\bar{G} \) and so \(n \leq 5 \). If \(n = 5 \) and if \(u \in V(G) - C_n \), then for any \(v \in C_n \cap (V - N(u)) \), \(V(G) - \{u, v\} \) is a restrained double dominating set of \(\bar{G} \) and so \(G \cong C_5 \). Suppose \(n = 4 \). If there exists a pendent vertex \(u \in V(G) - C_n \) such that \(d(u, v_i) \geq 2 \) for some \(i (1 \leq i \leq 4) \), then \(V(G) - \{u, v_{i-1}\} \) is a restrained double dominating set of \(\bar{G} \). If \(G \) contains two pendent vertices say \(u \) and \(v \), then \(V(G) - \{u, v\} \) is a restrained double dominating set of \(\bar{G} \). Hence \(G \cong C_4 \) or \(G_1 \). If \(n = 3 \), as above we can show that every vertex not on \(C_3 \) is at most at distance two from a vertex of \(C_3 \). If there exists two vertices at distance two from a vertex of \(C_3 \), we get a similar contradiction. Also the degree of every vertex of \(C_3 \) is either two or three, since otherwise either \(\bar{G} \) has isolated vertices or \(\bar{G} \) has a restrained double dominating set of cardinality \(p - 2 \). Hence \(G \cong G_2, G_3 \) or \(G_4 \). Converse is obvious. \(\square \)

Theorem 2.12. If \(T \) is a tree different from the star \(K_{1,p-1} \), then

\[
\gamma_{2r}(T) = \begin{cases}
5 & \text{if } T \cong P_3, B(r, s) \text{ with } r + s = 3 \\
4 & \text{if } T \cong B(r, s) \text{ with } r + s \neq 3 \text{ or } T_1 \\
3 & \text{otherwise.}
\end{cases}
\]

Proof. Let \(S \) be the set of all supports of \(T \). Since \(G \) is different from star, \(|S| \geq 2 \).
Case (i) $|S| \geq 4$.

Let u_1, v_1, w_1, x_1 be four distinct supports with pendent vertices, $u \in N(u_1), v \in N(v_1), w \in N(w_1)$ and $x \in N(x_1)$. Since T is a tree, at least two of these four supports are nonadjacent. Without loss of generality we can assume that x_1 is nonadjacent to u_1. Let $D = \{u, v, w\}$. Clearly D is a double dominating set in T and by choice of $x_1, \langle V - D \rangle$ has no isolated vertices. Hence D is a restrained double dominating set of \bar{T}. Also no set of cardinality two can be a restrained double dominating set of \bar{T} and so $\gamma_{2r}(\bar{T}) = 3$.

Case (ii) $|S| = 3$.

Let $S = \{u_1, v_1, w_1\}$ where u, v and w are pendent vertices with $u \in N(u_1), v \in N(v_1), w \in N(w_1)$. Suppose $\langle S \rangle \cong P_3$. If $\deg u_1 \geq 3$ or $\deg w_1 \geq 3$, then $D = \{u, v, w\}$ is a restrained double dominating set in T. Also no set of cardinality two can be a restrained double dominating set of \bar{T} and so $\gamma_{2r}(\bar{T}) = 3$. If $\deg u_1 = \deg v_1 = 2$ and $\deg v_1 \geq 3$, then $\gamma_{2r}(\bar{T}) = 3$ or T is isomorphic to the tree T_1 given in Figure 4 and $\gamma_{2r}(\bar{T}) = 4$. If $\langle S \rangle \cong K_2 \cup K_1$ or $3K_1$ then there exists a vertex x which is neither a pendent vertex nor a support and x is nonadjacent to at least one of $\{u_1, v_1, w_1\}$. In this case, $D = \{u, v, w\}$ is a γ_{2r}-set in T and so $\gamma_{2r}(\bar{T}) = 3$.

Case (iii) $|S| = 2$.

Let $S = \{u_1, v_1\}$ and let u and v be pendent vertices with $u \in N(u_1)$ and $v \in N(v_1)$. If u_1 and v_1 are adjacent then $T \cong B(r, s)$. It can be easily verified that $\gamma_{2r}(\bar{T}) = 5$ if $r + s = 3$ and $\gamma_{2r}(\bar{T}) = 4$ otherwise.

Suppose u_1 and v_1 are nonadjacent. If there exists a vertex x adjacent to both u_1 and v_1, either $T \cong P_5$ in which case $\gamma_{2r}(\bar{T}) = 5$ or $\deg u_1(\deg v_1) \geq 3$ and $\{u, u_1, v\}$ is a γ_{2r}-set in \bar{T} so that $\gamma_{2r}(\bar{T}) = 3$. Otherwise $\{u, u_1, v\}$ is a γ_{2r}-set and so $\gamma_{2r}(\bar{T}) = 3$.

Corollary 2.13. If T is a tree different from the star $K_{1, p-1}$, then $\gamma_{2r}(T) + \gamma_{2r}(\bar{T}) \leq p + 5$ and equality holds if and only if T is P_5, $B(r, s)$, where $r + s = 3$. If $T \not\cong P_5$, $B(r, s)$, where $r + s = 3$, then $\gamma_{2r}(T) + \gamma_{2r}(\bar{T}) \leq p + 4$ and equality holds if and only if $T \cong T_1, T_2, B(r, s)$, where $r + s \neq 3$. In all other cases, $\gamma_{2r}(T) + \gamma_{2r}(\bar{T}) \leq p + 3$ and this bound is sharp.

Proof. Follows from Theorem 2.12. Sharpness is exhibited by the graph given in Figure 5.
Theorem 2.14. Let G be a connected bipartite graph with bipartition X, Y, $|X| = m$, $|Y| = n$ ($2 \leq m \leq n$) such that \overline{G} has no isolated vertices. If $G \not\cong K_{2,3}$ or $K_{3,n}$, then $\gamma_{2r}(\overline{G}) = 3$ or 4. Furthermore $\gamma_{2r}(\overline{G}) = 4$ if and only if every pair of vertices u, v in X, $N(u) \cap N(v) \cap Y \neq \emptyset$ and vice versa.

Proof. Clearly $\gamma_{2r}(\overline{G}) \geq 2$. If $\{u, v\}$ is a γ_{2r}-set in \overline{G}, then u and v are isolated vertices in G and so $\gamma_{2r}(\overline{G}) \geq 3$. Since $G \not\cong K_{2,3}$ or $K_{3,n}$, there exists a set S with $|S \cap X| \geq 2$ and $|S \cap Y| \geq 2$ such that S is a restrained double dominating set of \overline{G} and hence $\gamma_{2r}(\overline{G}) \leq 4$.

Suppose $\gamma_{2r}(\overline{G}) = 4$. If there exists u, v in X with $N(u) \cap N(v) \cap Y = \emptyset$, then for any $w \in Y, \{u, v, w\}$ is a γ_{2r}-set in \overline{G}, which is a contradiction. Converse is obvious.

Corollary 2.15. Let G be a connected bipartite graph such that \overline{G} has no isolated vertices. Then $\gamma_{2r}(G) + \gamma_{2r}(\overline{G}) \leq p + 4$ and the bound is sharp.

Proof. Follows from Theorem 2.14. Sharpness is exhibited by the graph given in Figure 6.

Acknowledgement

We are thankful to the referees for their helpful suggestions.

References

