Abstract

A Roman dominating function on a graph G is a function $f : V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of a Roman dominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_R(G)$ of G is the minimum weight of a Roman dominating function on G. In this paper, we study trees for which contracting any edge decreases the Roman domination number.

Keywords: Domination, roman domination, tree, critical.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

Let $G = (V(G), E(G))$ be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_G(v)$, or just $N(v)$, and its closed neighborhood by $N_G[v] = N[v]$. For a vertex set $S \subseteq V(G)$, $N(S) = \cup_{v \in S} N(v)$ and $N[S] = \cup_{v \in S} N[v]$. The degree $\text{deg}(x)$ of a vertex x denotes the number of neighbors of x in G, and $\Delta(G)$ is the maximum degree of G. If S is a subset of $V(G)$, then we denote by $G[S]$ the subgraph of G induced by S. For notation and graph theory terminology in general we follow [3].

For a graph G, let $f : V(G) \rightarrow \{0, 1, 2\}$ be a function, and let $(V_0; V_1; V_2)$ be the ordered partition of $V(G)$ induced by f, where $V_i = \{v \in V(G) : f(v) = i\}$ for $i = 0, 1, 2$. There is a 1–1 correspondence between the functions $f : V(G) \rightarrow \{0, 1, 2\}$ and the ordered partition $(V_0; V_1; V_2)$ of $V(G)$. So we will write $f = (V_0; V_1; V_2)$.
A function $f : V(G) \rightarrow \{0, 1, 2\}$ is a Roman dominating function if every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of a Roman dominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$, is the minimum weight of a Roman dominating function on G. A function $f = (V_0; V_1; V_2)$ is called a γ_R-function (or $\gamma_R(G)$-function when we want to refer f to G), if it is a Roman dominating function and $f(V(G)) = \gamma_R(G)$, [1, 5, 6].

Roman domination vertex critical graphs are studied in [2]. A graph G is Roman domination vertex critical, or just γ_R-vertex critical, if removing any vertex of G decreases the Roman domination number. We say a vertex v is a Roman domination critical vertex, or just a γ_R-critical vertex, if $\gamma_R(G - v) < \gamma_R(G)$. Thus a graph G is γ_R-vertex critical if every vertex of G is γ_R-critical.

For a pair of adjacent vertices x, y in a graph G, we denote by $G.(xy)$ the graph obtained by contracting the edge xy. So, $G.(xy)$ may be viewed as the graph obtained from G by deleting the vertices x and y and appending a new vertex, labeled by (xy), that is adjacent to all the vertices of $G - x - y$ that were originally adjacent to either x or y. We call a graph G Roman domination dot critical, or just γ_R-dot critical, if $\gamma_R(G.(xy)) < \gamma_R(G)$ for any two adjacent vertices x, y. If G is γ_R-dot critical and $\gamma_R(G) = k$, then we call G a k-γ_R-dot critical graph. In [4] it was shown that if $e = xy$ is an edge of a graph G, then $\gamma_R(G) - 2 \leq \gamma_R(G.(xy)) \leq \gamma_R(G)$.

We have proved [4] that any γ_R-vertex critical graph is γ_R-dot critical. In [2] it was shown that the complete graph K_2 is the only γ_R-vertex critical tree. In this paper we mainly study γ_R-dot critical trees, and we will demonstrate that there exist a lot of γ_R-dot critical trees. Throughout this paper for an edge $e = uv$ of a graph G with $\deg(u) = 1$ and $\deg(v) > 1$, we call e a pendant edge, u a pendant vertex, and v a support vertex.

2. Some general results

We start with some classes of γ_R-dot critical graphs. The proof is straightforward and is therefore omitted.

Proposition 2.1. (1) The path P_n is γ_R-dot critical if and only if $n \not\equiv 0 \pmod{3}$.
(2) The cycle C_n is γ_R-dot critical if and only if $n \not\equiv 0 \pmod{3}$.
(3) The complete bipartite graph $K_{m,n}$ is γ_R-dot critical if and only if $m = n = 1$ or $\min\{m,n\} \geq 2$.

Now we present some extremal γ_R-dot critical trees. Let H be a tree obtained from a path P_4 by adding a pendant edge to each support vertex of P_4. Let H_1 be a tree obtained from a path $P_6 = v_1v_2v_3v_4v_5v_6$ by adding a pendant edge to v_3. Also let H_2 be a tree obtained from $K_{1,3}$ by subdividing each edge. In the following we characterize all k-γ_R-dot critical trees for $k = 3, 4, 5$. The proof for this result is also straightforward and is therefore omitted.
Lemma 2.2.

1. A tree T is $3\gamma_R$-dot critical if and only if $T = P_4$.

2. A tree T is $4\gamma_R$-dot critical if and only if $T \in \{P_5, H\}$.

3. A tree T is $5\gamma_R$-dot critical if and only if $T \in \{P_7, H_1, H_2\}$.

Proposition 2.3. Let $\{u_1, u_2, \ldots, u_n\}$ be the vertex set of a graph H without isolated vertices. If G is a graph formed from H by attaching exactly two leaves v_i and w_i and joining them to u_i for $1 \leq i \leq n$, then G is γ_R-dot critical.

Proof. Obviously, the function $f = (V_0; V_1; V_2) = (V(G) - V(H), \emptyset, V(H))$ is a γ_R-function of G and therefore we obtain $\gamma_R(G) = 2n$. Now let $e = xy$ be an edge of G. If $x = u_i$ and $y = v_i$ or $y = w_i$, then $\gamma_R(G.(xy)) = 2n - 1$, since H has no isolated vertices. If $x = u_i$ and $y = u_j$ for $i \neq j$, then $\gamma_R(G.(xy)) = 2n - 2$, and the proof is complete.

Proposition 2.4. If a support vertex of a graph G is adjacent to at least three leaves, then G is not γ_R-dot critical.

Proof. Let u be a support vertex of G which is adjacent to at least three leaves, and let $f = (V_0; V_1; V_2)$ be a γ_R-function of G. This leads to $u \in V_2$. Now let v be a leaf adjacent to u. Since the vertex uv of $G.(uv)$ is adjacent to at least two leaves, for any γ_R-function g of $G.(uv)$, we have $g((uv)) = 2$ (or 0 with leaves 1, if uv is adjacent to exactly two leaves). Consequently, G is not γ_R-dot critical.

By Proposition 2.4, each support vertex in a γ_R-dot critical tree is adjacent to at most two leaves. Let \mathcal{F} be the class of all trees with the property that each support vertex has degree 3 and is adjacent to exactly two leaves. In order to characterize γ_R-dot critical trees in \mathcal{F} we need the following lemmas.

Lemma 2.5. Let x be a support vertex of degree 3 in a γ_R-dot critical tree and let x be adjacent to two leaves. If y is the vertex adjacent to x with $\deg(y) > 1$, then $\deg(y) \geq 3$.

Proof. Let T be a γ_R-dot critical tree, and let $x \in V(T)$ be a support vertex with two leaves z_1, z_2 adjacent to x. Let y be the vertex adjacent to x with $\deg(y) > 1$. Suppose to the contrary, that $\deg(y) = 2$. Let $y_1 \neq x$ be adjacent to y. Let f be a γ_R-function for $T.(xz_1)$. If $f((xz_1)) \neq 0$, then $g_1 : V(T) \to \{0, 1, 2\}$ defined by $g_1(x) = 2$, $g_1(z_1) = g_1(z_2) = 0$, and $g_1(u) = f(u)$ if $u \notin \{x, z_1, z_2\}$ is a RDF for T. Thus $\gamma_R(T) \leq \gamma_R(T.(xz_1))$, a contradiction to the hypothesis that T is γ_R-dot critical. So $f((xz_1)) = 0$. But then either $f(y) = 2$ or $f(z_2) = 2$. Suppose that $f(y) = 2$ (the proof for $f(z_2) = 2$ is similar). Now $g_2 : V(T) \to \{0, 1, 2\}$ defined by $g_2(x) = 2$, $g_2(y_1) = \max\{1, f(y_1)\}$, and $g_2(u) = 0$ if $u \in N(x)$, and $g_2(u) = f(u)$ if $u \notin N[x] \cup \{y_1\}$, is a RDF for T. Thus $\gamma_R(T) \leq \gamma_R(T.(xz_1))$, a contradiction. This implies that $\deg(y) \geq 3$.

Lemma 2.6. Let x be a vertex of degree greater than one in a tree T such that each vertex of $N(x)$ except at most one is a support vertex adjacent to two leaves. Then T is not γ_R-dot critical.

Proof. Let x be a vertex in a tree T and $k = \text{deg}(x)$. Let $N(x) = \{y_1, y_2, \ldots, y_k\}$, where y_i is a support vertex adjacent to two leaves for $2 \leq i \leq k$. Let z_i, z'_i be the two leaves adjacent to y_i. Suppose to the contrary, that T is γ_R-dot critical. Then $\gamma_R(T,(y_2z_2)) < \gamma_R(T)$. Let f be a γ_R-function for $T,(y_2z_2)$. Since $\gamma_R(T,(y_2z_2)) < \gamma_R(T)$, it is a simple matter to see that $f((y_2z_2)) = 0$, $f(z'_2) = 1$ and $f(x) = 2$. Now we define $g : V(T) \to \{0,1,2\}$ by $g(x) = g(z_i) = g(z'_i) = 0$ for $2 \leq i \leq k$, $g(y_i) = 2$ for $2 \leq i \leq k$, $g(y_1) = \max\{1,f(y_1)\}$, and $g(u) = f(u)$ if $u \notin N[x] \cup \{z_i, z'_i : 2 \leq i \leq k\}$. Then g is a RDF for T, a contradiction

Theorem 2.7. A tree $T \in F$ is γ_R-dot critical if and only if T is isomorphic to the tree H in Lemma 2.2.

Proof. Assume to the contrary, that $T \in F - H$ is a γ_R-dot critical tree. Let $P = v_1v_2 \ldots v_k$ be a longest path in T. Since $T \not\cong H$, we deduce that $k \geq 5$. Thus v_2 is a support vertex which is adjacent to two leaves. By Lemma 2.5, $\text{deg}(v_3) \geq 3$. But then each vertex of $N(v_3) \setminus \{v_4\}$ is a support vertex adjacent to two leaves. According to Lemma 2.6, T is not γ_R-dot critical, a contradiction.

Next we investigate some special trees.

Theorem 2.8. Let T be a tree consisting of a path $P = v_1v_2 \ldots v_n$ such that v_j is adjacent to a leaf u_j for $j \in \{2,3,\ldots,n-1\}$. Then T is γ_R-dot critical if and only if

1. $n = 3t$ with $t \geq 2$ and $j = 3i$ for $1 \leq i \leq t - 1$ or $j = 3i - 2$ for $2 \leq i \leq t$.
2. $n = 3t + 1$ with $t \geq 2$ and $j = 3i + 1$ for $1 \leq i \leq t - 1$.

Proof. First let $n = 3t$ with $t \geq 1$. If $t \geq 2$ and $j = 3i$ for $1 \leq i \leq t - 1$, then it is a simple matter to obtain $\gamma_R(T) = 2t + 1$ and $\gamma_R(T,(xy)) = 2t$ for every edge xy of T, and thus T is γ_R-dot critical. For reason of symmetry, T is also γ_R-dot critical in the case that $j = 3i - 2$ for $2 \leq i \leq t$. However, if $j = 3i - 1$, then $\gamma_R(T) = 2t$ and $\gamma_R(T,(v_1v_2)) = 2t$, and thus T is not γ_R-dot critical.

Second let $n = 3t + 1$ with $t \geq 1$. If $j = 3i + 1$ for $1 \leq i \leq t - 1$, then $\gamma_R(T) = 2t + 2$ and $\gamma_R(T,(xy)) = 2t + 1$ for every edge xy of T, and thus T is γ_R-dot critical. However, if $j = 3i$ for $1 \leq i \leq t$, then $\gamma_R(T) = 2t + 1$ and $\gamma_R(T,(u_3v_i)) = 2t + 1$, and thus T is not γ_R-dot critical. For reason of symmetry, T is also not γ_R-dot critical in the case that $j = 3i - 1$ for $1 \leq i \leq t$.

Third let $n = 3t + 2$ with $t \geq 1$. Then $\gamma_R(T) = 2t$ and $\gamma_R(T,(uv_j)) = 2t$, and thus T is not γ_R-dot critical. This completes the proof.
Theorem 2.9. Let T be a tree consisting of a path $P = v_1v_2 \ldots v_n$ such that v_j is adjacent to a leaf u and v_{j+1} is adjacent to a leaf w, where $2 \leq j \leq n-2$. Then T is γ_R-dot critical if and only if
\begin{enumerate}
\item $j \equiv 2 \pmod{3}$ and $n \not\equiv 0 \pmod{3}$.
\item $j \equiv 0 \pmod{3}$ and $n \not\equiv 1 \pmod{3}$.
\item $j \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$.
\end{enumerate}

Proof. Assume in the following, without loss of generality, that $j-1 \leq n - (j+2) + 1 = n - (j+1)$.

(1) First let $n = 3t$ with $t \geq 2$. It is easy to verify that $\gamma_R(T) = 2t + 1$ and $\gamma_R(T.(v_{3t-1}v_{3t})) = 2t + 1$, and thus T is not γ_R-dot critical.

Second let $n = 3t+1$ with $t \geq 1$. We observe that $\gamma_R(T) = 2t+2$ and $\gamma_R(T.(xy)) \leq 2t+1$ for every edge xy of T, and thus T is γ_R-dot critical.

Third let $n = 3t+2$ with $t \geq 1$. We observe that $\gamma_R(T) = 2t+3$ and $\gamma_R(T.(xy)) \leq 2t+2$ for every edge xy of T, and thus T is γ_R-dot critical.

(2) First let $n = 3t$ with $t \geq 2$. Then $\gamma_R(T) = 2t+2$ and $\gamma_R(T.(xy)) \leq 2t+1$ for every edge xy of T, and thus T is γ_R-dot critical.

Second let $n = 3t + 1$ with $t \geq 2$. Then $\gamma_R(T) = 2t + 2$ and $\gamma_R(T.(v_3v_{3t+1})) = 2t + 2$, and thus T is not γ_R-dot critical.

Third let $n = 3t+2$ with $t \geq 2$. We observe that $\gamma_R(T) = 2t+3$ and $\gamma_R(T.(xy)) \leq 2t+2$ for every edge xy of T, and thus T is γ_R-dot critical.

(3) First let $n = 3t$ with $t \geq 3$. Then $\gamma_R(T) = 2t+1$ and $\gamma_R(T.(v_{3t-1}v_{3t})) = 2t+1$, and thus T is not γ_R-dot critical.

Second let $n = 3t+1$ with $t \geq 3$. Then $\gamma_R(T) = 2t+2$ and $\gamma_R(T.(v_1v_2)) = 2t+2$, and thus T is not γ_R-dot critical.

Third let $n = 3t+2$ with $t \geq 2$. Then $\gamma_R(T) = 2t+3$ and $\gamma_R(T.(xy)) \leq 2t+2$ for every edge xy of T, and thus T is γ_R-dot critical. \qed

Theorem 2.10. Let $P = v_1v_2 \ldots v_n$ be a path. Then the corona $T = P \circ K_1$ is γ_R-dot critical if and only if $n \not\equiv 0 \pmod{3}$.

Proof. Let u_i be a leaf of T adjacent to v_i for $1 \leq i \leq n$.

First let $n = 3t$ with $t \geq 1$. Then $\gamma_R(T) = 4t$ and $\gamma_R(T.(u_2v_2)) = 4t$, and thus T is not γ_R-dot critical.

Second let $n = 3t + 1$ with $t \geq 0$. Then $\gamma_R(T) = 4t+2$ and $\gamma_R(T.(xy)) = 4t+1$ for every edge xy of T. Thus T is γ_R-dot critical.

Third let $n = 3t+2$ with $t \geq 0$. Then $\gamma_R(T) = 4t+3$ and $\gamma_R(T.(xy)) = 4t+2$ for every edge xy of T. Thus T is γ_R-dot critical, and the proof is complete. \qed
Theorem 2.11. Let \(P = v_1v_2 \ldots v_n \) be a path, and let \(T' = P \circ K_1 \) such that \(u_i \) is a leaf of \(T' \) adjacent to \(v_i \) for \(1 \leq i \leq n \). Then the tree \(T \) consisting of \(T' \) and a further vertex \(w \) adjacent to \(u_n \) is \(\gamma_R \)-dot critical if and only if \(n \neq 1 \pmod{3} \).

Proof. First let \(n = 3t \) with \(t \geq 1 \). Then \(\gamma_R(T) = 4t + 1 \) and \(\gamma_R(T.(xy)) = 4t \) for every edge \(xy \) of \(T \). Thus \(T \) is \(\gamma_R \)-dot critical.

Second let \(n = 3t + 1 \) with \(t \geq 0 \). Then \(\gamma_R(T) = 4t + 2 \) and \(\gamma_R(T.(u_nv_n)) = 4t + 2 \), and thus \(T \) is not \(\gamma_R \)-dot critical.

Third let \(n = 3t + 2 \) with \(t \geq 0 \). Then \(\gamma_R(T) = 4t + 4 \) and \(\gamma_R(T.(xy)) = 4t + 3 \) for every edge \(xy \) of \(T \). Thus \(T \) is \(\gamma_R \)-dot critical, and the proof is complete.

\[\Box \]

3. Construction

In this section we give some ways of constructing \(\gamma_R \)-dot critical trees. We begin with the following trivial observation.

Observation 3.1. (1) Let \(x \) be a vertex of degree at least three in a tree \(T \) such that at least three vertices of \(N(x) \) are support vertices adjacent to exactly one leaf. Then for each \(\gamma_R \)-function \(f \), \(f(x) = 2 \).

(2) Let \(x \) be a support vertex in a \(\gamma_R \)-dot critical tree and let \(x \) be adjacent to exactly two leaves. If \(y \) is adjacent to \(x \) and not adjacent to any leaf, then for any \(\gamma_R \)-function \(f \) for \(T \), \(f(y) \neq 1 \).

Lemma 3.2. Let \(T \) be a \(\gamma_R \)-dot critical tree, and let \(x \) be a vertex such that for each \(\gamma_R \)-function \(f \), \(f(x) = 2 \). Let \(y \) be a vertex adjacent to \(x \). Then for each \(\gamma_R \)-function \(g \) of \(T.(xy) \), \(g((xy)) = 2 \).

Proof. Let \(T \) be a \(\gamma_R \)-dot critical tree, and let \(x \) be a vertex such that for any \(\gamma_R \)-function \(f \), \(f(x) = 2 \). Let \(y \) be a vertex adjacent to \(x \). Assume to the contrary, that there is a \(\gamma_R \)-function \(g = (V_0; V_1; V_2) \) for \(T.(xy) \) such that \(g((xy)) \neq 2 \). If \(\gamma_R(T.(xy)) = \gamma_R(T) - 2 \), then \(g_1 = (V_0 \setminus \{(xy)\}; (V_1 \setminus \{(xy)\}) \cup \{x, y\}; V_2) \) is a RDF for \(T \), a contradiction. So suppose that \(\gamma_R(T.(xy)) = \gamma_R(T) - 1 \). If \(g(xy) = 1 \), then \(g_2 = (V_0; (V_1 \setminus \{(xy)\}) \cup \{x, y\}; V_2) \) is a RDF for \(T \), a contradiction. It remains to suppose that \(g(xy) = 0 \). Let \(z \in V_2 \cap N_T((xy)) \), and without loss of generality assume that \(z \in N_T(x) \). In this case \(g_3 = ((V_0 \setminus \{(xy)\}) \cup \{x\}; V_1 \cup \{y\}; V_2) \) is a RDF for \(T \), a contradiction \(\Box \)

Now we consider the following operations. Let \(T \) be a \(\gamma_R \)-dot critical tree, and let \(x \in V(T) \).

\(O_1 \): If for each \(\gamma_R \)-function \(f \), \(f(x) = 2 \), attach a path \(yzw \) and join \(z \) to \(x \).

\(O_2 \): If for each \(\gamma_R \)-function \(f \), \(f(x) = 2 \), attach a path \(v_1v_2 \ldots v_{3j+2} \) for some non-negative integer \(j \), and join \(v_1 \) to \(x \).
\(O_3: \) If for each \(\gamma_R \)-function \(f \), \(f(x) = 1 \), attach a path \(v_1v_2\ldots v_m \) for some positive integer \(m \not\equiv 2 \pmod{3} \), and join \(v_1 \) to \(x \).

\(O_4: \) If for each \(\gamma_R \)-function \(f \), \(f(x) = 0 \), attach a path \(v_1v_2\ldots v_m \) for some positive integer \(m \not\equiv 0 \pmod{3} \), and join \(v_1 \) to \(x \).

Proposition 3.3. Let \(T \) be a \(k-\gamma_R \)-dot critical tree, and let \(T' \) be obtained from \(T \) by operation \(O_1 \). Then \(T' \) is \((k+2)\)-\(\gamma_R \)-dot critical.

Proof. Let \(T \) be a \(k-\gamma_R \)-dot critical tree, and let \(x \) be a vertex of \(T \) such that for each \(\gamma_R \)-function \(f \), \(f(x) = 2 \). Let \(T' \) be obtained from \(T \) by operation \(O_1 \). So \(T' \) is obtained from \(T \) by attaching a path \(yzw \) and joining \(z \) to \(x \). Let \(f = (V_0; V_1; V_2) \) be a \(\gamma_R \)-function for \(T \).

We observe that \(f_1 = (V_0 \cup \{z\}; V_1 \cup \{y, w\}, V_2) \) is a RDF for \(T' \). So \(\gamma_R(T') \geq \gamma_R(T) + 2 \).

We show that \(\gamma_R(T') = \gamma_R(T) + 2 \). Suppose to the contrary that \(\gamma_R(T') \neq \gamma_R(T) + 2 \). Let \(g \) be a \(\gamma_R \)-function for \(T' \). It is obvious that \(g(y) + g(z) + g(w) \geq 2 \). If \(\gamma_R(T') \leq \gamma_R(T) \), then \(g_1 : V(T) \rightarrow \{0, 1, 2\} \) defined by \(g_1(x) = \max\{1, g(x)\} \) and \(g_1(u) = g(u) \) if \(u \neq x \), is a RDF for \(T \) with weight less than \(\gamma_R(T) \), a contradiction. So suppose that \(\gamma_R(T') = \gamma_R(T) + 1 \). If \(g(z) = 0 \), then \(g_{|\{T\}} \) is a RDF for \(T \), while if \(g(z) = 2g_1 \) described above, is a RDF for \(T \), both of which is a contradiction. Thus \(\gamma_R(T') = \gamma_R(T) + 2 \).

Next we show that \(T' \) is \(\gamma_R \)-dot critical. Let \(e = uv \in E(T') \). If \(e \in E(T) \), then \(\gamma_R(T.(uv)) \leq \gamma_R(T) - 1 \). Using \(\gamma_R(T') = \gamma_R(T) + 2 \), we deduce that

\[
\gamma_R(T'.(uv)) \leq \gamma_R(T) - 1 + 2 = \gamma_R(T) + 1 < \gamma_R(T').
\]

It remains to assume that \(e \in E(T') \setminus E(T) \). Let \(h = (V_0; V_1; V_2) \) be a \(\gamma_R \)-function for \(T \). If \(e = xz \), then \(h_1 = (V_0 \cup \{y, w\}; V_1; V_0 \setminus \{x\} \cup \{(xz)\}) \) is a RDF for \(T'.(xz) \) and hence \(\gamma_R(T'.(xz)) \leq \gamma_R(T). \) So suppose that \(e = yz \). This time \(h_2 = (V_0 \cup \{(yz)\}; V_1 \cup \{w\}; V_2) \) is a RDF for \(T'.(yz) \) and so again \(\gamma_R(T'.(yz)) \leq \gamma_R(T) + 1 < \gamma_R(T') \). \(\square \)

Proposition 3.4. Let \(T \) be a \(k-\gamma_R \)-dot critical tree, and let \(T' \) be obtained from \(T \) by operation \(O_2 \). Then \(T' \) is \((k+2j+1)\)-\(\gamma_R \)-dot critical.

Proof. Let \(T \) be a \(k-\gamma_R \)-dot critical tree, and let \(x \) be a vertex of \(T \) such that for each \(\gamma_R \)-function \(f \), \(f(x) = 2 \). Let \(T' \) be obtained from \(T \) by operation \(O_2 \). So \(T' \) is obtained from \(T \) by attaching a path \(P_{3j+2} = v_1v_2\ldots v_{3j+2} \) for an integer \(j \geq 0 \), and joining \(v_1 \) to \(x \).

We know that \(\gamma_R(P_{3j+2}) = 2j + 2 \). It is straightforward to verify that \(\gamma_R(T') = \gamma_R(T) + 2j + 1 = \gamma_R(T) + \gamma_R(P_{3j+2}) - 1 \). By Lemma 3.2, we need to show that \(\gamma_R(T'.e) < \gamma_R(T') \) for \(e \in E(P_{3j+2}) \cup \{xv_1\} \). Without loss of generality suppose that \(e = xv_1 \). It follows that \(\gamma_R(T'.e) = \gamma_R(T) + 2j \). This completes the proof. \(\square \)

Proposition 3.5. Let \(T \) be a \(\gamma_R \)-dot critical tree, and let \(T' \) be obtained from \(T \) by operation \(O_3 \). Then \(T' \) is \(\gamma_R \)-dot critical.
Proof. Let \(T \) be a \(k\gamma_R\)-dot critical tree, and let \(x \) be a vertex of \(T \) such that for any \(\gamma_R\)-function \(f \), \(f(x) = 1 \). Let \(T' \) be obtained from \(T \) by operation \(O_3 \). So \(T' \) is obtained from \(T \) by attaching a path \(v_1v_2\ldots v_m \) for an integer \(m \) and joining \(v_1 \) to \(x \). First assume that \(m = 3j + 1 \) for some integer \(j \geq 0 \). Let \(f = (V_0; V_1; V_2) \) be a \(\gamma_R \)-function for \(T \). Since \(\gamma_R(P_{3j+1}) = 2j + 1 \), it is a simple matter to see that \(\gamma_R(T') = \gamma_R(T) + 2j + 1 = \gamma_R(T) + \gamma_R(P_{3j+1}) \). But both \(T \) and \(P_{3j+1} \) are \(\gamma_R \)-dot critical. So it is sufficient to show that \(\gamma_R(T' . (xv_1)) < \gamma_R(T') \). Now we observe that \(\gamma_R(T' . (xv_1)) \leq \gamma_R(T) + \gamma_R(P_{3j}) = \gamma_R(T) + 2j < \gamma_R(T') \). The proof for \(m \equiv 0 \) (mod 3) is similar. \(\square \)

Similarly, the following can be verified.

Proposition 3.6. Let \(T \) be a \(\gamma_R \)-dot critical tree, and let \(T' \) be obtained from \(T \) by operation \(O_4 \). Then \(T' \) is \(\gamma_R \)-dot critical.

Now an induction on the number of operations leads us to the following result.

Theorem 3.7. Let \(T' \) be a tree obtained from a \(\gamma_R \)-dot critical tree \(T \) by successive operations \(D_1, D_2, \ldots, D_m \), where \(D_i \in \{O_1, O_2, O_3, O_4\} \) for \(1 \leq i \leq m \). Then \(T \) is \(\gamma_R \)-dot critical.

Let \(n \geq 3 \) be a positive integer, and let \(T \) be a tree obtained from \(K_{1,n} \) by subdividing each edge of \(K_{1,n} \). If \(x \) is the central vertex of \(T \), then by Observation 3.1 (1), for each \(\gamma_R \)-function \(f \), we observe that \(f(x) = 2 \), \(f(u) = 0 \) if \(u \in N(x) \) and \(f(u) = 1 \) if \(u \not\in N[x] \). Thus we can apply each operation \(O_i \) on \(T \) for \(i \in \{1, 2, 3, 4\} \), to produce a further \(\gamma_R \)-dot critical tree.

Problem 3.8. Characterize all \(\gamma_R \)-dot critical trees.

References

