ON THE ROMAN \(k \)-BONDAGE NUMBER OF A GRAPH

N. Dehgardi*, S.M. Sheikholeslami* and L. Volkmann†

*Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Tabriz, I.R. Iran.
e-mail: s.m.sheikholeslami@azaruniv.edu

†Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany.
volkm@math2.rwth-aachen.de

Communicated by: S. Arumugam
Received 04 May 2011; revised 10 August 2011; accepted 27 September 2011

Abstract

A Roman dominating function on a graph \(G = (V, E) \) is a function \(f : V \to \{0, 1, 2\} \) such that every vertex \(v \in V \) with \(f(v) = 0 \) has at least one neighbor \(u \in V \) with \(f(u) = 2 \). The weight of a Roman dominating function is the value \(f(V(G)) = \sum_{u \in V(G)} f(u) \). The minimum weight of a Roman dominating function on a graph \(G \) is called the Roman domination number, denoted by \(\gamma_R(G) \). The Roman bondage number \(b_R(G) \) of a graph \(G \) with maximum degree at least two is the minimum cardinality of all sets \(E' \subseteq E(G) \) for which \(\gamma_R(G - E') > \gamma_R(G) \).

In this note we first present sharp bounds for \(b_R(G) \) and then we initiate the study of the Roman \(k \)-bondage number in graphs. Some of our results extend those given by Jafari Rad and Volkmann in 2011 for the Roman bondage number.

Keywords: Roman domination number, Roman bondage number, Roman \(k \)-domination number, Roman \(k \)-bondage number.

2010 Mathematics Subject Classification: 05C69

1. Introduction

In this paper, \(G \) is a simple graph with vertex set \(V = V(G) \) and edge set \(E = E(G) \). The order \(|V| \) of \(G \) is denoted by \(n = n(G) \). For every vertex \(v \in V \), the open neighborhood \(N(v) \) is the set \(\{u \in V \mid uv \in E\} \) and the closed neighborhood of \(v \) is the set \(N[v] = N(v) \cup \{v\} \). The degree of a vertex \(v \in V \) is \(\text{deg}_G(v) = \text{deg}(v) = |N(v)| \). The minimum and maximum degree of a graph \(G \) are denoted by \(\delta = \delta(G) \) and \(\Delta = \Delta(G) \), respectively. The open neighborhood of a set \(S \subseteq V \) is the set \(N(S) = \bigcup_{v \in S} N(v) \), and the closed neighborhood of \(S \) is the set \(N[S] = N(S) \cup S \). The complement \(\overline{G} \) of \(G \) is the simple graph whose vertex set is \(V \) and whose edges are the pairs of nonadjacent vertices of \(G \). We write \(K_n \) for the
complete graph of order \(n \) and \(C_n \) for a cycle of length \(n \). The reader is referred to [6, 17] for any terminology and notation not defined here.

Let \(k \) be a positive integer. A subset \(S \) of vertices of \(G \) is a \(k \)-dominating set if \(|N(v) \cap S| \geq k \) for every \(v \in V - S \). The \(k \)-domination number \(\gamma_k(G) \) is the minimum cardinality of a \(k \)-dominating set of \(G \). The \(k \)-bondage number of a graph \(G \) with \(\Delta \geq k \) is the minimum cardinality among all sets of edges \(B \subseteq E \) for which \(\gamma_k(G - B) > \gamma_k(G) \). The \(k \)-bondage number was introduced by Lu and Xu [12].

Let \(k \geq 1 \) be an integer. Following Kämmerling and Volkmann [10], a Roman \(k \)-dominating function on a graph \(G \) is a labeling \(f : V \to \{0, 1, 2\} \) such that every vertex with label 0 has at least \(k \) neighbors with label 2. The weight of a Roman \(k \)-dominating function is the value \(f(V) = \sum_{u \in V(G)} f(u) \). The minimum weight of a Roman \(k \)-dominating function on a graph \(G \) is called the Roman \(k \)-domination number, denoted by \(\gamma_{kR}(G) \). Note that the Roman 1-domination number \(\gamma_{1R}(G) \) is the usual Roman domination number \(\gamma_R(G) \). A \(\gamma_{kR}(G) \)-function is a Roman \(k \)-dominating function on \(G \) with weight \(\gamma_{kR}(G) \).

A Roman \(k \)-dominating function \(f : V \to \{0, 1, 2\} \) can be represented by the ordered partition \((V_0, V_1, V_2)\) (or \((V_0^f, V_1^f, V_2^f)\) to refer to \(f \)) of \(V \), where \(V_i = \{v \in V \mid f(v) = i\} \).

In this representation, its weight is \(\omega(f) = |V_1| + 2|V_2| \). Since \(V_1^f \cup V_2^f \) is a \(k \)-dominating set when \(f \) is an RkDF, and since placing weight 2 at the vertices of a \(k \)-dominating set yields an RkDF, in [10], it was observed that

\[
\gamma_k(G) \leq \gamma_{kR}(G) \leq 2\gamma_k(G) \tag{1}
\]

The definition of the Roman dominating function was given implicitly by Stewart [16] and ReVelle and Rosing [15]. Cockayne, Dreyer Jr., Hedetniemi and Hedetniemi [2] as well as Chambers, Kinnersley, Prince and West [1] have given a lot of results on Roman domination. For more information on Roman domination we refer the reader to [3, 4, 5, 7, 8, 9, 11].

Let \(k \) be a positive integer, and let \(G \) be a graph with maximum degree at least two. The Roman \(k \)-bondage number \(b_{kR}(G) \) of \(G \) is the minimum cardinality of all sets \(E' \subseteq E \) for which \(\gamma_{kR}(G - E') > \gamma_{kR}(G) \). When \(k = 1 \), the Roman \(k \)-bondage number \(b_{kR}(G) \) is the usual Roman bondage number \(b_R(G) \) which was introduced by Jafari Rad and Volkmann in [13], and has been further studied for example in [14].

Our purpose in this paper is to initiate the study of the Roman \(k \)-bondage number in graphs. We first present some general upper bounds for Roman bondage number and then we study basic properties and bounds for the Roman \(k \)-bondage number of a graph. In addition, we determine the Roman \(k \)-bondage number of some classes of graphs.

We make use of the following observations and results for our investigations.

Observation 1.1. Let \(k \) be a positive integer, and let \(G \) be a graph of order \(n \) with \(\gamma_{kR}(G) = n \). Then for any \(E' \subseteq E \) we have \(\gamma_{kR}(G) = n = \gamma_{kR}(G - E') \).

Observation 1.2. Let \(k \) be a positive integer, and let \(G \) be a graph of order \(n \). If \(n \leq 2k \) or \(\Delta < k \), then \(\gamma_{kR}(G) = n \).
Proposition A. [10] If G is a graph of order n and maximum degree $\Delta = k$, then $\gamma_{kR}(G) = n$.

Proposition B. [10] If G is a graph of order n with at most one cycle, then $\gamma_{kR}(G) = n$ when $k \geq 2$.

Proposition C. [10] Let G be a graph of order n. Then $\gamma_{kR}(G) < n$ if and only if G contains a bipartite subgraph H with bipartition X, Y such that $|X| > |Y| \geq k$ and $d_H(v) \geq k$ for each $v \in X$.

Proposition D. [13] For $n \geq 3$, $b_{R}(K_n) = \lceil n/2 \rceil$.

Proposition E. [13] If G is a graph, and uvw a path of length 2 in G, then

$$b_{R}(G) \leq \deg(u) + \deg(v) + \deg(w) - |N(u) \cap N(v)| - 3.$$

If u and w are adjacent, then

$$b_{R}(G) \leq \deg(u) + \deg(v) + \deg(w) - |N(u) \cap N(v)| - 4.$$

Regarding Observations 1.1, 1.2 and Propositions A and B, in the study of the Roman k-bondage $b_{kR}(G)$ we will assume that $\gamma_{kR}(G) < n$, $n > 2k$, $\Delta > k$ and that G is not a tree or unicyclic graph.

We start with the following observations and properties.

Observation 1.3. Let G be a graph. Suppose q edges can be removed from G to give a graph H with $b_{kR}(H) = 1$. Then $b_{kR}(G) \leq q + 1$.

Observation 1.4. Let G be a graph of order n with $\gamma_{kR}(G) < n$. Assume that H is a spanning subgraph of G with $\gamma_{kR}(H) = \gamma_{kR}(G)$. If $K = E(G) - E(H)$, then $b_{kR}(H) \leq b_{kR}(G) \leq b_{kR}(H) + |K|$.

If P_n and C_n are the path and cycle of order n, then it was shown in [2] that $\gamma_{R}(P_n) = \gamma_{R}(C_n) = \lceil 2n/3 \rceil$. In addition, we find in [13] for $n \geq 3$:

1. $b_{R}(P_n) = 2$ if $n \equiv 2 \pmod{3}$ and $b_{R}(P_n) = 1$ otherwise,

2. $b_{R}(C_n) = 3$ if $n \equiv 2 \pmod{3}$ and $b_{R}(C_n) = 2$ otherwise.

Using these results and Observation 1.4, we obtain:

Corollary 1.5. Let G be a graph of order $n \geq 3$.

1. If G has a Hamiltonian path and $\gamma_{R}(G) = \lceil 2n/3 \rceil$, then $b_{R}(G) \geq 2$ if $n \equiv 2 \pmod{3}$,

2. If G is Hamiltonian with $\gamma_{R}(G) = \lceil 2n/3 \rceil$, then $b_{R}(G) \geq 2$ and $b_{R}(G) \geq 3$ if $n \equiv 2 \pmod{3}$.

Observation 1.6. If a graph G has a vertex v such that $\gamma_{kR}(G - v) \geq \gamma_{kR}(G)$, then $b_{kR}(G) \leq \deg(v) \leq \Delta$.

Observation 1.7. If a graph G has a vertex v such that every $\gamma_{kR}(G)$-function assigns 2 to v, then $b_{kR}(G) \leq \deg(v) \leq \Delta$.

Proof. If E_v is the set of edges incident with v, then we will show that $\gamma_{kR}(G - E_v) > \gamma_{kR}(G)$. Suppose to the contrary that $\gamma_{kR}(G - E_v) \leq \gamma_{kR}(G)$. Then $\gamma_{kR}(G - E_v) = \gamma_{kR}(G - v) + 1$ and hence $\gamma_{kR}(G) \geq \gamma_{kR}(G - v) + 1$. Since $\gamma_{kR}(G) \leq \gamma_{kR}(G - v) + 1$, we obtain $\gamma_{kR}(G) = \gamma_{kR}(G - v) + 1$, a contradiction to the hypothesis that every $\gamma_{kR}(G)$-function assigns 2 to v.

2. Bounds on the Roman bondage number

In this section we establish bounds on the Roman bondage number of a graph that are independent of the graph structure.

Theorem 2.1. If G is a connected graph of order $n \geq 3$, then

$$b_R(G) \leq n - 1.$$

Furthermore, this bound is sharp for K_3.

Proof. Let u and v be two adjacent vertices with $\deg(u) \leq \deg(v)$. If $b_R(G) \leq \deg(u) \leq n - 1$, then we are done. Suppose to the contrary that $b_R(G) > \deg(u)$.

Let E_u denote the set of edges incident with u. Then $\gamma_R(G - E_u) = \gamma_R(G)$ and $\gamma_R(G - u) = \gamma_R(G) - 1$. Assume that $\mathcal{F} = \{f = (V_0^f, V_1^f, V_2^f) \mid f$ is a $\gamma_R(G - u)$-function $\}$ and $V_2 = \cup_{f \in \mathcal{F}} V_2^f$. Then u is adjacent to no vertex of V_2 in G. Hence $|E_u| \leq n - 1 - |V_2|$ and $v \notin V_2$. Let F_v denote the set of edges from v to a vertex in V_2. If $\gamma_R(G - u - F_v) > \gamma_R(G - u)$ or equivalently $\gamma_R(G - u - F_v) > \gamma_R(G) - 1$, then $\gamma_R(G - (E_u \cup F_v)) > \gamma_R(G)$, and we see that

$$b_R(G) \leq |E_u \cup F_v| \leq (n - 1 - |V_2|) + |V_2| = n - 1.$$

So we assume that $\gamma_R(G - u - F_v) = \gamma_R(G - u)$. Then $\gamma_R(G - u - v) = \gamma_R(G - u) - 1$. Since G is connected of order $n \geq 3$ and since $\deg(u) \leq \deg(v)$, we may assume that $w \in N(v) - \{u\}$. Let $\mathcal{F}' = \{f = (V_0^f, V_1^f, V_2^f) \mid f$ is a $\gamma_R(G - u - v)$-function $\}$, and let $V_2' = \cup_{f \in \mathcal{F}'} V_2^f$. Then u and v are not adjacent to any vertex of V_2' in G. Let F_w denote the set of edges from w to a vertex in V_2' and so $w \notin V_2'$.

If $w \in V_1^h$ for some $h \in \mathcal{F}'$, then $\gamma_R(G - \{u, v, w\}) = \gamma_R(G - \{u, v\}) - 1 = \gamma_R(G) - 3$ and obviously the function $g : V(G) \to \{0, 1, 2\}$ defined by

$$g(u) = g(v) = 0, g(v) = 2 \text{ and } g(x) = h(x) \text{ for } x \in V(G) - \{u, v, w\},$$
is a Roman dominating function on G of weight less than $\gamma_R(G)$ which is a contradiction. Therefore $\gamma_R(G-u-v-F_u) > \gamma_R(G-u-v)$ or equivalently $\gamma_R(G-u-v-F_u) > \gamma_R(G)-2$. Thus $\gamma_R(G-(E_u \cup F_v \cup F_w)) > \gamma_R(G)$ and we see that

$$b_R(G) \leq |E_u \cup F_v \cup F_w| \leq (n - 1 - |V'_2|) + |V'_2| = n - 1,$$

and the proof is complete.

By a closer look at the proof of Theorem 2.1 we have the following result improving Proposition E.

Corollary 2.2. If G is a connected graph of order $n \geq 3$ and uvw a path of length 2 in G, then

$$b_R(G) \leq \deg(u) + \deg(v) + \deg(w) - |N(u) \cap N(v)| - |N(w) \cap (N(u) \cup N(v)) - \{u, v\}| - 3.$$

If u and w are adjacent, then

$$b_R(G) \leq \deg(u) + \deg(v) + \deg(w) - |N(u) \cap N(v)| - |N(w) \cap (N(u) \cup N(v)) - \{u, v\}| - 4.$$

The next result presents an upper bound on the Roman bondage number that involves the maximum degree. This bound also indicates a relationship between the Roman bondage number and the Roman domination number. If $\gamma_R(G) = 2$, then obviously $b_R(G) \leq \delta(G)$. So we assume that $\gamma_R(G) \geq 3$.

Theorem 2.3. If G is a connected graph of order $n \geq 4$ with Roman domination number $\gamma_R(G) \geq 3$, then

$$b_R(G) \leq (\gamma_R(G)-2)\Delta(G) + 1.$$

Proof. The proof is by induction on $\gamma_R(G)$. First suppose $\gamma_R(G) = 3$. Let u be a vertex of maximum degree in G and let E_u denote the set of edges incident with u. If $\gamma_R(G-E_u) > \gamma_R(G)$, then $b_R(G) \leq |E_u| = \deg(u)$ and hence $b_R(G) \leq \Delta(G)$. Assume that $\gamma_R(G-E_u) = \gamma_R(G)$ or equivalently $\gamma_R(G-u) = \gamma_R(G) - 1 = 2$. Since $n \geq 3$, there is a vertex v that is adjacent with every vertex of G but u. Thus $\deg_{G}(v) = \Delta$ also, and u is adjacent with every vertex of G except v. If there is an edge e incident with v such that $\gamma_R(G-u-e) > \gamma_R(G-u)$, then obviously $b_R(G) \leq \deg(u) + 1 \leq \Delta + 1$ and we are done. Assume that the removal from $G-u$ of any one edge incident with v again leaves a graph with Roman domination number 2. It follows that there is a vertex $w \neq v$ that is adjacent to every vertex of $G-u$. Since the vertex v is the only vertex of G that is not adjacent with u, we deduce that w must be adjacent in G with u. This however implies that $\gamma_R(G) = 2$ which is a contradiction.

Now assume that the statement is true for any graph of order $n \geq 4$ with Roman domination number $3 \leq \gamma_R(G) \leq k$. Let G be a graph of order $n \geq 4$ with $\gamma_R(G) = k + 1$. Suppose to the contrary that $b_R(G) > (\gamma_R(G)-2)\Delta(G) + 1$. Then for any vertex u of
Then obviously $f \in \mathbb{R}$. Thus we determine the Roman k-bondage number.

Theorem 3.1. Let k be a positive integer and let G be a graph with $\Delta(G) \geq k + 1$. Then $b_{kR}(G) = 1$ if and only if G has an edge xy satisfying either $x \in V_2$ and $y \in V_0 \cap PN_k(x, V_2)$ or $y \in V_2$ and $x \in V_0 \cap PN_k(y, V_2, G)$ for any $\gamma_{kR}(G)$-function $f = (V_0, V_1, V_2)$.

Proof. Assume that $b_{kR}(G) = 1$. Then there is an edge, denoted by xy, in G such that $\gamma_{kR}(G - xy) > \gamma_{kR}(G)$. Let $f = (V_0, V_1, V_2)$ be a $\gamma_{kR}(G)$-function. If $x \in V_1$ or $y \in V_1$, then obviously f is a $\gamma_{kR}(G - xy)$-function which is a contradiction. If $x, y \in V_0$ or $x, y \in V_2$, then clearly f is a $\gamma_{kR}(G - xy)$-function which is a contradiction again. Thus we may assume, without loss of generality, that $x \in V_2$ and $y \in V_0$. Then y has at least k neighbors in V_2. If $|V_2 \cap N_G(y)| > k$ then f is a $\gamma_{kR}(G - xy)$-function, a contradiction. Thus $|V_2 \cap N_G(y)| = k$ and hence $y \in V_0 \cap PN_k(x, V_2)$.

Conversely, we assume that the edge xy of G satisfies either $x \in V_2$ and $y \in V_0 \cap PN_k(x, V_2)$ or $y \in V_2$ and $x \in V_0 \cap PN_k(y, V_2, G)$ for any $\gamma_{kR}(G)$-function $f = (V_0, V_1, V_2)$. Then we only need to prove $\gamma_{kR}(G - xy) > \gamma_{kR}(G)$. Suppose to the contrary that $\gamma_{kR}(G - xy) = \gamma_{kR}(G)$.

Let $g = (V_0, V_1, V_2)$ be a $\gamma_{kR}(G - xy)$-set. Since $\gamma_{kR}(G - xy) = \gamma_{kR}(G)$, g is a $\gamma_{kR}(G)$-set. Then we may assume, without loss of generality, that $x \in V_2^g$ and $y \in V_0^g \cap PN_k(x, V_2^g, G)$. This implies that $|V_2^g \cap N_{G - xy}(y)| = k - 1$ which is a contradiction. This completes the proof.

Corollary 3.2. Let k be a positive integer, and let G be a graph of order n with $\gamma_{kR}(G) < n$. If G has a unique $\gamma_{kR}(G)$-function, then $b_{kR}(G) = 1$.

Proof. Let $f = (V_0^f, V_1^f, V_2^f)$ be the $\gamma_{kR}(G)$-function. If there exists a vertex $u \in V_0^f$ with $v \in V_2^f \cap N(u)$ such that $u \in PN_k(v, V_2, G)$, then the result follows from Theorem 3.1.
Then b is a RkDF of the condition 1 is fulfilled. For any γ-function $f = (V_0, V_1, V_2)$ and there exists $\gamma_k(G)$-functions $f_i (i = 1, 2)$ such that $v_i \in V_0 \cap PN_k(u_i, V_2^f, G)$ for each i.

Proof. Assume that $b_k(G) = 2$. Then there are two edges, denoted by u_1v_1, u_2v_2, in G such that $\gamma_k(G - \{u_1v_1, u_2v_2\}) > \gamma_k(G)$. Let $f = (V_0, V_1, V_2)$ be a $\gamma_k(G)$-function. We consider two cases.

Case 1. $\{u_1v_1\} \cap \{u_2v_2\} \neq \emptyset$.

Then we may assume, without loss of generality, that $u_1 = u_2$. If $u_1 \in V_1$, then obviously f is a $\gamma_k(G - \{u_1v_1, u_2v_2\})$-dominating function which is a contradiction. Let $u \in V_2$. If $v_1 \not\in V_0 \cap PN_{k+1}(u_1, V_2, G)$ and $v_2 \not\in V_0 \cap PN_{k+1}(u_1, V_2, G)$, then f is a $\gamma_k(G - \{u_1v_1, u_2v_2\})$-dominating function, a contradiction. Thus $v_1 \in V_0 \cap PN_{k+1}(u_1, V_2, G)$ or $v_2 \in V_0 \cap PN_{k+1}(u_1, V_2, G)$. Since $b_k(G) = 2$, it follows from Theorem 3.1 that there exist $\gamma_k(G)$-functions $f_i (i = 1, 2)$ such that $v_i \in V_0 \cap PN_{k+1}(u_1, V_2^f, G)$ for each i. Therefore the condition 1 is fulfilled.

Finally, let $u_1 \in V_0$. If $v_1, v_2 \in V_2$ and $u_1 \in PN_{k+1}(v_1, V_2, G)$ and $u_1 \in PN_{k+1}(v_2, V_2, G)$, then the condition 2 is fulfilled. Let $\{v_1, v_2\} \not\subseteq V_2$, $u_1 \not\in PN_{k+1}(v_1, V_2, G)$ or $u_1 \not\in PN_{k+1}(v_2, V_2, G)$. If $v_1, v_2 \not\in V_2$, $v_1 \in V_2$ and $u_1 \not\in PN_k(v_1, V_2, G)$ or $v_2 \in V_2$ and $u_1 \not\in PN_k(v_2, V_2, G)$, then obviously f is a $\gamma_k(G - \{u_1v_1, u_2v_2\})$-dominating function, a contradiction. Thus we may assume $v_1 \in V_2$ and $u_1 \in PN_k(v_1, V_2, G)$ or $v_2 \in V_2$ and $u_1 \in PN_k(v_1, V_2, G)$. Since $b_k(G) = 2$, it follows from Theorem 3.1 that there exist
\(\gamma_{kR}(G)\)-functions \(f_i\) \((i = 1, 2)\) such that \(v_i \in V_2^f\) and \(u_1 \in PN_k(v_i, V_2^f, G)\). Hence the condition 3 holds.

Case 2. \(\{u_1, v_1\} \cap \{u_2, v_2\} = \emptyset\).

Then the edges \(u_1v_1\) and \(u_2v_2\) are independent. If \(\{u_i, v_i\} \cap V_2 = \emptyset\) for \(i = 1, 2\), then obviously \(f\) is a \(\gamma_{kR}(G - \{u_1v_1, u_2v_2\})\)-function which is a contradiction. Thus \(\{u_i, v_i\} \cap V_2 \neq \emptyset\) for some \(i\). Let \(\{u_1, v_1\} \cap V_2 \neq \emptyset\) (the proof of the case \(\{u_2, v_2\} \cap V_2 \neq \emptyset\) is similar). If \(\{u_1, v_1\} \subseteq V_2\), then \(f\) is a \(\gamma_{kR}(G - \{u_1v_1\})\)-function. If \(\{u_2, v_2\} \cap V_1 \neq \emptyset\), \(\{u_2, v_2\} \subseteq V_0\) or \(\{u_2, v_2\} \subseteq V_2\), then \(f\) is a \(\gamma_{kR}(G - \{u_1v_1, u_2v_2\})\)-function which is a contradiction. Therefore we may assume, without loss of generality, that \(v_2 \in V_2\) and \(u_2 \in V_0\). Since \(\gamma_{kR}(G - \{u_1v_1, u_2v_2\}) > \gamma_{kR}(G - \{u_1v_1\}) = \gamma_{kR}(G)\), we must have \(u_2 \in PN_k(v_2, V_2, G)\).

If \(v_2 \in V_2\) and \(u_2 \in PN_k(v_2, V_2, G)\) or \(u_2 \in V_0\) and \(u_2 \in PN_k(v_2, V_2, G)\) for every \(\gamma_{kR}(G)\)-function, then \(b_{kR}(G) = 1\) by Theorem 3.1, a contradiction. Thus there is a \(\gamma_{kR}(G)\)-function, say \(g\), such that \(v_2 \not\in V_2\) or \(u_2 \not\in PN_k(v_2, V_2, G)\) and \(u_2 \not\in V_0\) or \(v_2 \not\in PN_k(v_2, V_2, G)\). Then \(g\) is a \(\gamma_{kR}(G - u_2v_2)\)-function and hence \(\gamma_{kR}(G) = \gamma_{kR}(G - u_2v_2)\). An argument similar to that described above \(v_1 \in V_2\) and \(u_1 \in PN_k(v_1, V_2, G)\) or \(u_1 \in V_2\) and \(v_1 \in PN_k(u_1, V_2, G)\). Thus the condition 3 holds.

Conversely, we assume that \(G\) has two edges \(u_1v_1, u_2v_2\) satisfying one of the above conditions. It is easy to see that \(\gamma_{kR}(G - \{u_1v_1, u_2v_2\}) > \gamma_{kR}(G)\). This completes the proof.

Theorem 3.4. Let \(k\) be a positive integer, and let \(G\) be a graph of order \(n > 2k\). If \(G\) has exactly \(m \geq k\) vertices of degree \(n - 1\), then

\[
b_{kR}(G) = \left\lfloor \frac{m - k + 1}{2} \right\rfloor.
\]

Proof. Since \(n > 2k\) and \(m \geq k\), \(\gamma_{kR}(G) = 2k\). Suppose that \(E' \subseteq E(G)\) is an arbitrary subset of edges such that \(|E'| < \left\lfloor \frac{m - k + 1}{2} \right\rfloor\). It is clear that \(G - E'\) has at least \(k\) vertices of degree \(n - 1\) and hence \(\gamma_{kR}(G - E') = 2k\). It follows that \(b_{kR}(G) \geq \left\lfloor \frac{m - k + 1}{2} \right\rfloor\).

Let \(S = \{v_1, v_2, \ldots, v_m\}\) be the set of vertices of degree \(n - 1\) in \(G\). Then the subgraph \(G[S]\) is the complete graph \(K_m\). If \(m - k + 1\) is even, then let \(H_1\) be the graph obtained from \(G\) by removing \(\frac{m - k + 1}{2}\) independent edges from \(G[S]\). Then \(H_1\) has exactly \(k - 1\) vertices of degree \(n - 1\). This implies that \(\gamma_{kR}(H_1) \geq 2k + 1\). Hence \(b_{kR}(G) \leq \left\lfloor \frac{m - k + 1}{2} \right\rfloor\).

If \(m - k + 1\) is odd, then let \(H_2\) be the graph obtained from \(G\) by removing \(\frac{m - k + 2}{2}\) independent edges from \(G[S]\). Then \(H_2\) has exactly \(k - 2\) vertices of degree \(n - 1\). Thus \(\gamma_{kR}(H_2) \geq 2k + 1\). This implies that \(b_{kR}(G) \leq \left\lfloor \frac{m - k + 1}{2} \right\rfloor\). Combining the obtained inequalities, we have \(b_{kR}(G) = \left\lfloor \frac{m - k + 1}{2} \right\rfloor\), and the proof is complete.

The special case \(k = 1\) of the next result can be found in [13].
Corollary 3.5. If $n > 2k$, then $b_{kR}(K_n) = \lceil \frac{n-k+1}{2} \rceil$.

If G is isomorphic to the complete bipartite graph $K_{p,q}$ with $q \geq p$, then by Proposition C, $\gamma_{kR}(G) = p + q = n$ when $p < k$ or $q = p = k$. Now we determine the Roman k-domination number for complete bipartite graphs $K_{p,q}$ with $q \geq p \geq k$ and $p + q \geq 2k + 1$.

Theorem 3.6. Let k be a positive integer, and let G be isomorphic to the complete bipartite graph $K_{p,q}$ with $q \geq p \geq k$ such that $n = p + q \geq 2k + 1$. Then

$$\gamma_{kR}(G) = \min\{k + p, 4k\}.$$

Proof. Let $X = \{u_1, u_2, \ldots, u_p\}$ and $Y = \{v_1, v_2, \ldots, v_q\}$ be the partite sets of G.

If $p \leq 3k$, then define $f : V(G) \rightarrow \{0, 1, 2\}$ by $f(u_1) = f(u_2) = \ldots = f(u_k) = 2$, $f(u_{k+1}) = f(u_{k+2}) = \ldots = f(u_p) = 1$ and $f(v_i) = 0$ for $1 \leq i \leq q$. Then f is a Roman k-dominating function of weight $2k + p - k = k + p$ and thus $\gamma_{kR}(G) \leq k + p < p + q = n$.

If $p \geq 3k + 1$, then define $g : V(G) \rightarrow \{0, 1, 2\}$ by $g(u_1) = g(u_2) = \ldots = g(u_k) = 2$, $g(v_1) = g(v_2) = \ldots = g(v_k) = 2$, and $g(u_i) = g(v_j) = 0$ for $k + 1 \leq i \leq p$ and $k \leq j \leq q$. Then g is a Roman k-dominating function of weight $4k$ and thus $\gamma_{kR}(G) \leq 4k < p + q = n$.

Now let $f = (V_0, V_1, V_2)$ be any $\gamma_{kR}(G)$-function. If $V_0 = \emptyset$, then $\gamma_{kR}(G) = n$, a contradiction. Hence we can assume that $|V_0| \geq 1$. If $V_0 \cap X \neq \emptyset$ and $V_0 \cap Y \neq \emptyset$, then $|V_2 \cap Y| \geq k$ and $|V_2 \cap X| \geq k$ and thus $\gamma_{kR}(G) \geq 4k$. If $V_0 \cap X \neq \emptyset$ and $V_0 \cap Y = \emptyset$, then $|V_2 \cap Y| = k$ and $|V_1 \cap Y| = q - k$ and thus $\gamma_{kR}(G) \geq 2k + q - k = k + q$. If $V_0 \cap X = \emptyset$ and $V_0 \cap Y \neq \emptyset$, then $|V_2 \cap X| = k$ and $|V_1 \cap X| = p - k$ and thus $\gamma_{kR}(G) \geq 2k + p - k = k + p$.

Combining the last three inequalities, we see that

$$\gamma_{kR}(G) \geq \min\{k + p, k + q, 4k\} = \min\{k + p, 4k\},$$

and altogether, we obtain the desired result.

Theorem 3.7. Let k be a positive integer, and let G be isomorphic to the complete bipartite graph $K_{p,q}$ with $q \geq p \geq k$ such that $n = p + q \geq 2k + 1$. Then

$$b_{kR}(G) = p - k + 1.$$

Proof. Let $X = \{u_1, u_2, \ldots, u_p\}$ and $Y = \{v_1, v_2, \ldots, v_q\}$ be the partite sets of G. Suppose that $E' \subseteq E(G)$ is an arbitrary edge set with $|E'| \leq p - k$, and let $G' = G - E'$. Then $X \cap V(G')$ contains at least k vertices, say u_1, u_2, \ldots, u_k of degree q and $Y \cap V(G')$ contains at least k vertices, say v_1, v_2, \ldots, v_k of degree p.

If $p \leq 3k$, then define $f : V(G') \rightarrow \{0, 1, 2\}$ by $f(u_1) = f(u_2) = \ldots = f(u_k) = 2$, $f(u_{k+1}) = f(u_{k+2}) = \ldots = f(u_p) = 1$ and $f(v_i) = 0$ for $1 \leq i \leq q$. Then f is a Roman k-dominating function on G' of weight $2k + p - k = k + p$ and thus $\gamma_{kR}(G') \leq k + p$. It follows from Theorem 3.6 that $\gamma_{kR}(G') = \gamma_{kR}(G)$ and therefore $b_{kR}(G) \geq p - k + 1$.

If $p \geq 3k + 1$, then define $g : V(G') \rightarrow \{0, 1, 2\}$ by $g(u_1) = g(u_2) = \ldots = g(u_k) = 2$, $g(v_1) = g(v_2) = \ldots = g(v_k) = 2$, and $g(u_i) = g(v_j) = 0$ for $k + 1 \leq i \leq p$ and $k \leq j \leq q$. Then
g is a Roman k-dominating function on G' of weight $4k$ and thus $\gamma_kR(G') = \gamma_kR(G)$ and therefore $b_kR(G) \geq p - k + 1$.

If H is the graph obtained from G by removing the edge set $\{u_kv_k, u_{k+1}v_{k+1}, \ldots, u_pv_p\}$, then it is straightforward to verify that $\gamma_kR(H) \geq \min\{k + p + 1, 4k + 1\}$. Hence $b_kR(G) \leq p - k + 1$, and the proof is complete.

4. Conclusions

We introduced the Roman k-bondage number improving the concept of Roman bondage number and we characterized all graphs with the Roman k-bondage number equal to 1 and 2 and also determined the Roman k-bondage number of complete graphs. Also we present some upper bounds on Roman bondage number of general graphs.

It would be interesting to determine the Roman k-bondage number for some well known classes of graphs such as cubic graphs, chordal graphs, n-cubes, or Cartesian product of two graphs.

We conclude this section with four open problems.

Problem 4.1. Prove or disprove: For any connected graph G of order $n \geq 3$, $b_R(G) = n - 1$ if and only if $G \cong K_3$.

As we have seen that $\gamma_R(C_4) = 3$ and $b_R(C_4) = 2$, so there exist graphs for which $b_R(G) = (\gamma_R(G) - 2)\Delta(G)$. We do not know whether the bound in Theorem 2.3 can be lowered by 1 and hence we pose:

Problem 4.2. If G is a connected graph of order $n \geq 4$ with Roman domination number $\gamma_R(G) \geq 3$, then

$$b_R(G) \leq (\gamma_R(G) - 2)\Delta(G).$$

Problem 4.3. Prove or disprove: If G is a connected graph of order $n \geq 3$, then

$$b_R(G) \leq n - \gamma_R(G) + 1.$$

Problem 4.4. Determine sharp (constant) upper bounds on $b_kR(G)$ for any graph G with $\gamma_kR(G) < n$. In particular, for any graph G of order n with $\gamma_kR(G) < n$, is $b_kR(G) \leq n - 1$?

Acknowledgment

The authors would like to thank the anonymous referee for the valuable comments.
References

